
Optimizations For Copying Garbage Collection

Erin Zsolcsak
Kathryn McKinley

Maria Jump
University of Texas at Austin

Steve Blackburn
Australian National University

University of Texas at Austin 2

Outline

• Dynamic Storage and Garbage Collection
• Beltway
• Optimizations for Beltway
• Appel Generational Copying GC
• Optimizations for Appel
• Results
• Future Work in Beltway
• Conclusion

University of Texas at Austin 3

Dynamic Storage Allocation

• Allocation of memory from the heap
at run-time

• Programmer must allocate and
explicitly deallocate this memory in
languages such as C and C++

University of Texas at Austin 4

Problems with Explicit
Memory Deallocation

• Due to premature
reclamation

• Object is deallocated but
still bound to an identifier

Example in C++

void wrong() {
int *pi = new int;
int * q = pi;

………
delete pi;
int x = 2 + *q;

}

Dangling Reference

pi is deleted before
all references to it have
been cleared

University of Texas at Austin 5

Problems with Explicit
Memory Deallocation

• Object to which no
identifier is bound

• Memory can no longer be
returned to the heap

Example in C++

void wrong() {
int *pi = new int;

………
int x = 2 + *pi;

}

Memory leak

pi goes out of scope
and *pi is never deleted

University of Texas at Austin 6

Solving the Problem

Garbage Collection
• automatic reclamation of dead objects in memory
• releases programmer from the duty of deallocating

the object

Dead – objects that
are no longer reachableGarbage – dead objects

Lisp, Haskell, Prolog, Java, C# use garbage collection

University of Texas at Austin 7

Beltway

Key Ideas
• Most objects die young
• Give objects time to die
• Avoid collecting old objects
• Incrementality improves responsiveness
• Copying GC can improve locality

University of Texas at Austin 8

Organizational Terms

• Increment – independently collectible
region of memory

• Belt – grouping of increments

Belts are collected independently

Increments can also be collected independently

University of Texas at Austin 9

• Rules:
– Only N increments available (N=8 here)
– Must reserve one for copying
– Always collect leftmost full increment

A Simple Example

0 1 2 3 4 5 6 7

increments

belt

0 1 2 3 4 5 6 71 2 3 4 5 6 7 82 3 4 5 6 7 8 9

• Notice:
- Collection occurs in FIFO order
- Mix copies and newly allocated objects

in memory

University of Texas at Austin 10

• Rules:
– Only N increments available (N=8 here)
– Must reserve one for copying
– Always collect leftmost, lowest full

increment

A More Interesting Example

• Notice:
– Generational & older first principles

• Called “Beltway X.X”
– X is the increment size (e.g. “Beltway 20.20” or “Beltway 14.14”)

• “Beltway 100.100” = Appel-style generational

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 82 3 4 5 6 7 8 9

etc. etc. …etc. etc. …0 1 2 3 4 5 6 7

33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 82 3 4 5 6 7 8 9

34 35 36 37 38 39 40 41

University of Texas at Austin 11

So What’s the Problem?

University of Texas at Austin 12

Pointers and Write Barriers
How are pointers handled?

Intra-increment pointers are ignored

Intra-increment pointers – pointers whose
source and target are in the same increment

Inter-increment pointers must be tested
If there is a possibility that the target will be
collected before the source, the pointer must be remembered

Only old-young pointers need to be remembered

University of Texas at Austin 13

What are Write Barriers?
global roots

e
f

g

h
i

l

n

o

p

q

r

k

b

a

c

d

need to remember: f -> e d-> h k-> n
c -> g
n -> k

m

j

Incremental collection will give us:
• Better performance through algorithmic flexibility
• More targeted collection
• Shorter pause times

Incremental collection will give us:
• Better performance through algorithmic flexibility
• More targeted collection
• Shorter pause times

University of Texas at Austin 14

Overhead of the
Write Barrier

Testing a pointer in Beltway requires:
Fast path test

• Does the pointer cross an increment?
Slow path test

• Does the pointer need to be remembered?

Fast path is cheap
mask, compare,
conditional

Slow path is expensive
3 loads and a

comparison

University of Texas at Austin 15

Motivation for Optimization
• Slow path was evaluated a lot in the nursery

– Because of FIFO nursery (look-up to decide
whether to remember or not)

– Causing significant performance hit

• Quick solution: remove FIFO behavior (special case)

• Not getting benefits of Older-First (OF) behavior in
the nursery

• Importance of OF in the nursery
– Avoids collecting youngest objects who have not

had time to die yet

University of Texas at Austin 16

Why Was Slow Path
Evaluated a lot?

• Hypothesis: Pointers to Type Information
Blocks (TIBs)

What is a TIB?
• Created when a class is loaded
• Of type object[] allocated into the nursery

(like all other objects)
• Stores information about the class

Each objects’ header points to a TIB

University of Texas at Austin 17

The TIB Write Barrier

Never necessary to remember pointers to TIBs

At runtime, TIB write barriers account
for most write barrier activity

• Updates to the pointer are not seen by the normal
write barrier

• Have explicit TIB write barrier which remembers
pointers to TIBs if necessary

University of Texas at Austin 18

Optimizations for Beltway

Immortal belt for TIBs
• when a TIB is allocated, it is put into a

immortal space where it can live for the duration
of the program

• eliminates overhead from copying the TIB over and over

Remove TIB write barrier
• pointers to TIBs are no longer tested by slow path

University of Texas at Austin 19

A Simple Case First

University of Texas at Austin 20

1

0

Appel Generational Copying GC
• Objects are grouped into “generations” according

to their age

Age – determined by amount of heap allocated
since object was created

University of Texas at Austin 21

Appel Facts to Remember
• Nursery always collected before

older generation (never FIFO)
• Nursery is collected most often

Weak generational hypothesis – most
objects die young

Statistics show 80-98% of objects die before
one further megabyte of heap storage has
been allocated

University of Texas at Austin 22

Optimizations for Appel

• Immortal space for TIBs

• Remove TIB write barrier
– Pointers to TIBs are no longer tested by

the fast path

University of Texas at Austin 23

Results for Appel

University of Texas at Austin 24

Results for Appel

University of Texas at Austin 25

Results for Beltway

none yet but…

University of Texas at Austin 26

Future Work in Beltway

• Pretenuring large objects

Pretenuring – allocation of long-living objects
into an older belt or into an immortal space

• Large object space

Large object space – eliminates the copying
of large objects

University of Texas at Austin 27

Conclusion

• In Appel, removing fast path test for
TIBs reduces run-time

