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Dynamic Storage Allocation

• Allocation of memory from the heap 
at run-time

• Programmer must allocate and 
explicitly deallocate this memory in 
languages such as C and C++
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Problems with Explicit 
Memory Deallocation

• Due to premature 
reclamation

• Object is deallocated but 
still bound to an identifier

Example in C++

void wrong() {
int *pi = new int;
int * q = pi;

………
delete pi;
int x = 2 + *q;

}

Dangling Reference

pi is deleted before 
all references to it have 
been cleared
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Problems with Explicit 
Memory Deallocation

• Object to which no 
identifier is bound

• Memory can no longer be 
returned to the heap

Example in C++

void wrong() {
int *pi = new int;

………
int x = 2 + *pi;

}

Memory leak

pi goes out of scope
and *pi is never deleted
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Solving the Problem

Garbage Collection
• automatic reclamation of dead objects in memory
• releases programmer from the duty of deallocating 

the object

Dead – objects that
are no longer reachableGarbage – dead objects

Lisp, Haskell, Prolog, Java, C# use garbage collection
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Beltway

Key Ideas
• Most objects die young
• Give objects time to die
• Avoid collecting old objects
• Incrementality improves responsiveness
• Copying GC can improve locality 
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Organizational Terms

• Increment – independently collectible 
region of memory

• Belt – grouping of increments

Belts are collected independently

Increments can also be collected independently
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• Rules:
– Only N increments available (N=8 here)
– Must reserve one for copying
– Always collect leftmost full increment

A Simple Example

0 1 2 3 4 5 6 7

increments

belt

0 1 2 3 4 5 6 71 2 3 4 5 6 7 82 3 4 5 6 7 8 9

• Notice:
- Collection occurs in FIFO order
- Mix copies and newly allocated objects

in memory
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• Rules:
– Only N increments available (N=8 here)
– Must reserve one for copying
– Always collect leftmost, lowest full 

increment

A More Interesting Example

• Notice:
– Generational & older first principles

• Called “Beltway X.X”
– X is the increment size (e.g. “Beltway 20.20” or “Beltway 14.14”)

• “Beltway 100.100” = Appel-style generational

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 82 3 4 5 6 7 8 9

etc. etc. …etc. etc. …0 1 2 3 4 5 6 7

33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 82 3 4 5 6 7 8 9

34 35 36 37 38 39 40 41
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So What’s the Problem?
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Pointers and Write Barriers
How are pointers handled?

Intra-increment pointers are ignored

Intra-increment pointers – pointers whose
source and target are in the same increment

Inter-increment pointers must be tested
If there is a possibility that the target will be 
collected before the source, the pointer must be remembered

Only old-young pointers need to be remembered
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What are Write Barriers?
global roots
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need to remember: f -> e d-> h k-> n
c -> g
n -> k
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j

Incremental collection will give us: 
• Better performance through algorithmic flexibility
• More targeted collection
• Shorter pause times

Incremental collection will give us: 
• Better performance through algorithmic flexibility
• More targeted collection
• Shorter pause times
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Overhead of the 
Write Barrier

Testing a pointer in Beltway requires:
Fast path test

• Does the pointer cross an increment?
Slow path test

• Does the pointer need to be remembered?

Fast path is cheap
mask, compare,
conditional

Slow path is expensive
3 loads and a 

comparison
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Motivation for Optimization
• Slow path was evaluated a lot in the nursery

– Because of FIFO nursery (look-up to decide 
whether to remember or not)

– Causing significant performance hit

• Quick solution: remove FIFO behavior (special case)

• Not getting benefits of Older-First (OF) behavior in 
the nursery   

• Importance of OF in the nursery
– Avoids collecting youngest objects who have not 

had time to die yet
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Why Was Slow Path 
Evaluated a lot?

• Hypothesis: Pointers to Type Information 
Blocks (TIBs) 

What is a TIB?
• Created when a class is loaded
• Of type object[] allocated into the nursery 

(like all other objects) 
• Stores information about the class

Each objects’ header points to a TIB
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The TIB Write Barrier

Never necessary to remember pointers to TIBs 

At runtime, TIB write barriers account 
for most write barrier activity

• Updates to the pointer are not seen by the normal 
write barrier

• Have explicit TIB write barrier which remembers 
pointers to TIBs if necessary
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Optimizations for Beltway

Immortal belt for TIBs
• when a TIB is allocated, it is put into a 

immortal space where it can live for the duration
of the program

• eliminates overhead from copying the TIB over and over

Remove TIB write barrier
• pointers to TIBs are no longer tested by slow path
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A Simple Case First
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1

0

Appel Generational Copying GC
• Objects are grouped into “generations” according 

to their age

Age – determined by amount of heap allocated
since object was created
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Appel Facts to Remember
• Nursery always collected before 

older generation (never FIFO)
• Nursery is collected most often

Weak generational hypothesis – most 
objects die young

Statistics show 80-98% of objects die before 
one further megabyte of heap storage has
been allocated
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Optimizations for Appel

• Immortal space for TIBs

• Remove TIB write barrier 
– Pointers to TIBs are no longer tested by 

the fast path
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Results for Appel
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Results for Appel
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Results for Beltway

none yet but…
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Future Work in Beltway

• Pretenuring large objects 

Pretenuring – allocation of long-living objects
into an older belt or into an immortal space

• Large object space 

Large object space – eliminates the copying
of large objects
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Conclusion

• In Appel, removing fast path test for 
TIBs reduces run-time


