
Cliff Notes for My Presentation

Slide 3: Dynamic Storage Allocation

- dynamic storage allocation is allocation of memory at runtime
- important because we do not always know ahead of time how much space

we’ll need
- in languages such as C and C++, when we dynamically allocate memory,

the programmer must also explicitly deallocate the memory
- not deallocating memory properly is a common source of programming

error
- two most common programming errors are dangling references and

memory leaks

Slide 4: Problems with Explicit Memory Deallocation

- dangling references occur when the programmer deallocates memory too
soon

- in the example, pi is deleted before all references to it have been
removed

- when we try to access the value pointed to by q (which consequently was
the value pointed to by pi), it no longer exists

Slide 5: Problems with Explicit Memory Deallocation

- a memory leak occurs when the programmer forgets to delete dynamically
allocated memory

- in this case, the memory can no longer be returned to the heap
- in the example, you can see that the programmer requested memory at

the beginning of the function but never returned it to the heap
- both dangling references and memory leaks can cause a lot of havoc in a

program

Slide 6: Solving the Problem

- to avoid dealing with the problems of explicit memory deallocation,
languages such as lisp and java use a “garbage collector”

- the garbage collector reclaims objects that are no longer reachable and
copies the survivors to another area of memory

- these dead objects are referred to as garbage

Slide 7: Beltway

- this summer my project dealt with optimizing the garbage collector (gc)
that Steve, Kathryn, and others created

- this gc is called Beltway and follows the following 5 key ideas of copying
gc
1. “most objects die young”

 - statistics show that between 80-95% of objects die before the next
 megabyte of heap has been allocated

2. “give objects time to die”
 - we do not want to collect the youngest objects because they are likely
 to still be alive
 3. “Avoid collecting old objects”

 - not as likely to be dead
 4. “incrementality improves responsiveness”
 - breaking down amount that needs to be collected at one time
 increases response time
 5. “copying gc can improve locality”

 - reduces amount of fragmentation
 - when survivors are copied, they are copied contiguously in memory

Slide 8: Organizational Terms

- before looking at an example of Beltway, there are two terms you must
know: belts and increments

- the beltway collector is made up of what we call “belts”
- and the belts are made up of “increments” (which are independently

collectible regions of memory)
- both belts and increments can be collected independently

Slide 9: A Simple Example
Slide 10: A More Interesting Example

Slide 11: So What’s the Problem?

- you might be asking yourself this very question – so what’s the problem?
- the beltway examples I showed you follow the 5 principles of copying gc

and the beltway gc seems to be a great new collector
- unfortunately, Steve and Kathryn found they could not get FIFO in the

nursery without a significant performance hit
- this is the problem we tried to solve this summer
- to understand the reasons behind this problem, we must first look at how

pointers are handled in beltway

Slide 12: Pointers and Write Barriers

- pointers whose source and target are in the same increment are called
“intra-increment” pointers and are ignored

- pointers whose source and target are in different increments need only be
remembered if the target could be collected before the source

- these are old-young pointers (pointers going from an object in an older
increment to an object in a younger increment)

- pointers are tested by a write barrier
- the write barrier also has the function of remembering old-young pointers
- to understand how a write barrier works, we need to look at a diagram of a

heap

Slide 13: What are Write Barriers?

- if we implement two write barriers (the gray lines), the heap is divided into
3 increments

- if we say that the leftmost increment is the youngest increment (meaning
we collect from left to right), we now need to remember only those
pointers that cross a barrier from right to left

- this eliminates the need to remember all pointers in the heap
- pointers “to remember” in grey (left) are the pointers the write barrier

would have to remember if we were collecting increment 1
- pointers “to remember” in red (middle) are the pointers the write barriers

would have to remember if we were collecting increment 2
- pointers “to remember” in gray (right) are the pointers the write barrier

would have to remember if we were collecting increment 3
- write barrier benefits us by: giving us better performance, targeted

collection, and shorter pause times (less time spent in gc)
- the write barrier sounds like a good idea but it does not come without its

cost

Slide 14: Overhead of the Write Barrier

- overhead of the write barrier comes in two forms:
- fast path: does the pointer cross a write barrier?
- slow path: if so, does the pointer need to be remembered?
- as stated, the fast path is cheap (we use a mask and XOR for this) and

the slow path is expensive
- now getting back to the problem of the performance hit from a FIFO

nursery

Slide 15: Motivation for Optimization

- Steve and Kathryn found that the expensive slow path was being
evaluated a lot

- having a FIFO nursery requires many look-ups to determine whether a
pointer needs to be remembered

- the quick solution Kathryn and Steve found was to remove the FIFO
behavior from the nursery

- to remove the FIFO behavior, two rules needed to be implemented: there
could only be a single nursery and it always had to be collected first

- however this made beltway more specific case and Kathryn wanted the
gc to be more general

- also without a FIFO nursery, they could not reap the benefits of OF (the
idea that we should “give objects time to die”)

Slide 16: Why was Slow Path Evaluated A lot?

- the final clue to the performance hit puzzle was to determine why the slow
path was being evaluated so much

- Steve and Kathryn hypothesized that it was because of pointer to TIBs
- TIB stands for “type information block”
- Important things to know about TIBs:

- created when a class is loaded
 - declared as an array of object references and allocated into the

 nursery (just like all other objects)
 - stores information about the class such as methods, virtual
 methods, etc
 - every object has a pointer to the TIB in its header

Slide 17: The TIB Write Barrier

- because pointers to the TIBs are in the object header, they are not seen
by the normal write barrier

- Steve and Kathryn implemented a TIB write to remember pointers to TIBs
if necessary

- however the TIB write barriers account for most of write barrier activity
AND

 furthermore, it is never necessary to remember pointers to TIBs
- so if we removed the TIB write barrier we thought we could decrease the

number of slow path evaluations, thus solving the problem of the
performance hit in the nursery

- but we can only remove w/b if we move all TIBs to a “special” place in
memory

Slide 18: Optimizations for Beltway

- Here’s what we did
- we implemented an immortal space for TIBs to live for the duration of the

program
- the immortal space will never be collected
- turned off the TIB write barrier

Slide 19: A Simple Case First

- but before we could implement these optimizations, we wanted to look at a
simpler case to get an idea of how they would affect performance

- so we implemented these changes in an Appel generational copying
collector

Slide 20: Appel Generational Copying GC

- objects are grouped into 2 generations according to their “age”
- age is determined by the amount of the heap allocated since the object

was created
- generation 0 is called the nursery and generation 1 is called the older

generation
- objects are allocated into the nursery
- when the nursery fills, we collect it and promote survivors to the older

generation
- we continue allocation into the nursery and the cycle continues
- when the older generation fills, we collect both the older generation and

the nursery
- pointers are handled as in beltway (i.e. intra-generational pointers are

ignored and old-young intergenerational pointers must be remembered)

Slide 21: Appel Facts to Remember

- nursery is always collected before the older generation
- collection is not FIFO
- nursery is collected most often following the hypothesis that “most objects

die young”
- note that this hypothesis is one of the principles of copying gc

Slide 22: Optimizations for Appel

- just like our optimization for Beltway, in Appel we created an immortal
space for TIBs and removed the tib write barrier

- the only difference with the tib write barrier is that in Appel the tib write
barrier only has a fast path

- this fast path does both tests (does a pointer cross a boundary and if so
does it need to be remembered)

Slide 23/24: Results for Appel

- Notice that removing the TIB write barrier (green line and aqua line)
causes a significant decrease in runtime (as much as 10% in some
places) as compared to Appel without the optimizations

- putting the TIBs in an immortal space does not have much affect on the
run-time

- javac: Sun JDK Java compiler compiling jess (another benchmark which is
a system shell)

- pseudojbb: emulates a 3-tier transaction processing system

Slide 25: Results for Beltway

- we do not have any results for beltway yet (they are running on the
computer as we speak)

- however based on the results from Appel, we expect that removing the
TIB write barrier will lower the run-time (probably more so than in Appel)

- we also do not believe that putting the TIBs into the immortal space will
have much of an effect on run-time (as in Appel)

