
Choosing Good Paths for Fast Distributed Reconfiguration of Hexagonal
Metamorphic Robots

�

Jennifer E. Walter Elizabeth M. Tsai Nancy M. Amato
Vassar College Swarthmore College Texas A&M University

walter@cs.vassar.edu tsai@cs.swarthmore.edu amato@cs.tamu.edu

Abstract

The problem addressed is the distributed reconfiguration of a meta-
morphic robot system composed of any number of two dimensional
robots (modules) from specific initial to specific goal configura-
tions. The initial configuration we consider is a straight chain of
modules, while the goal configuration satisfies a simple admissibil-
ity condition. Reconfiguration of the modules depends on finding a
contiguous path of cells, called a substrate path, that spans the goal
configuration. Modules fill in this substrate path and then move
along the path to fill in the remainder of the goal without collision
or deadlock.

In this paper, we examine the problem of finding the substrate
path most likely to result in fast parallel reconfiguration, drawing
on results from our previous papers [12, 13, 14]. Admissible goal
configurations are represented as directed acyclic graphs (DAGs).
We present a combination graph traversal-weighting algorithm that
traverses all paths in the rooted DAG and use this algorithm to de-
termine the best substrate path. We extend our definition of admis-
sible substrate paths to consider admissible obstacle surfaces for
reconfiguration when obstacles are present in the environment.

1 Introduction

A self-reconfigurable robotic system is a collection of inde-
pendently controlled, mobile robots, each of which has the
ability to connect, disconnect, and move around adjacent
robots. Metamorphic robotic systems [3], a subset of self-
reconfigurable systems, are further limited by requiring each
module to be identical in structure, motion constraints, and
computing capabilities. Typically, the modules have a regu-
lar symmetry so that they can be packed densely, i.e., packed
so that gaps between adjacent modules are as small as possi-
ble. In these systems, robots achieve locomotion by moving
over a substrate composed of one or more other robots. The
mechanics of locomotion depend on the hardware and can
include module deformation to crawl over neighboring mod-
ules [4, 10] or to expand and contract to slide over neighbors
[11]. Alternatively, moving robots may be constrained to
rigidly maintain their original shape, requiring them to roll
over neighboring robots [7, 16, 17].

�
This research supported in part by NSF CAREER Award CCR-

9624315, NSF Grants IIS-9619850, ACI-9872126, EIA-9975018, EIA-
0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937,
EIA-0079874.

��

������������
������������
������������
������������
������������
������������
������������
������������
������

������������
������������
������������
������������
������������
������������
������������
������������
������

������������
������������
������������
������������
������������
������������
������������
������������
������

������������
������������
������������
������������
������������
������������
������������
������������
������

������������
������������
������������
������������
������������
������������
������������
������������
������

	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1: Metamorphic robots used to buttress a building.

Shape changing in these composite systems is envisioned
as a means to accomplish various tasks, such as bridge build-
ing, structural support, satellite recovery, or tumor excision
[10]. The complete interchangeability of the robots pro-
vides a high degree of system fault tolerance. Also, self-
reconfiguring robotic systems are potentially useful in envi-
ronments that are not amenable to direct human observation
and control (e.g., interplanetary space, undersea depths).

The motion planning problem for a metamorphic robotic
system is to determine a sequence of robot motions required
to go from a given initial configuration (

�
) to a desired goal

configuration (�). Most of the existing motion planning
strategies rely on centralized algorithms to plan and super-
vise the motion of the system components [4, 6, 10, 11, 15].
Others use distributed approaches which rely on heuristic ap-
proximations or require communication between robots in
each step of the reconfiguration process [1, 7, 8, 16, 17].

We focus on a system composed of planar, hexagonal
robotic modules as described by Chirikjian [4]. We con-
sider a distributed motion planning strategy, given the as-
sumption of initial global knowledge of � . Our distributed
approach offers the benefits of localized decision making and
the potential for greater system fault tolerance. Additionally,
our strategy requires less communication between modules
than other approaches. We have previously applied this ap-
proach to the problem of reconfiguring a straight chain to
an intersecting straight chain [13] and a straight chain to a
goal configuration that satifies a general “admissibility” con-
dition [12, 14]. In these papers, a centralized algorithm was
described for determining whether an arbitrary goal configu-
ration is admissible.

This paper presents an algorithm to rank candidate sub-

strate paths in an admissible goal configuration, allowing
flexibility in choosing the location of

�
based on that sub-

strate path. This flexibility in choosing the intersection point
of

�
and � allows our reconfiguration algorithms to be appli-

cable in many more scenarios than in our previous work. An-
other contribution of this paper is the adaptation of the dis-
tributed reconfiguration algorithm presented in [14] to pro-
vide better parallelism based on the choice of substrate path.
Lastly, we introduce our new work on reconfiguration when
obstacles are present in the environment. Our admissibility
criteria for a substrate path can be readily extended to recon-
figuration in the presence of obstacles.

2 Related work

Chirikjian [4] and Pamecha [10] discuss centralized algo-
rithms for planar hexagonal modules that use the distance
between all modules in

�
and the coordinates of each goal

position to accomplish the reconfiguration of the system.
Pamecha et al. [10] define the distance between configu-
rations as a metric and apply this metric to system self-
reconfiguration using a simulated annealing technique to
drive the process towards completion.

Centralized motion planning strategies for systems of two
dimensional robotic modules are also examined by Nguyen
et al. [9] and analysis is presented for the number of moves
necessary for specific reconfigurations.

A centralized motion planning strategy for three dimen-
sional cubic robots is presented by Rus and Vona [11]. A
set of distributed motion planning algorithms for a system of
cubic robots is presented by Butler et al. in [1]. In another
paper [2], Butler et al. present a rule set that can be run by
vertical “layers” of cubic modules and a distributed control
algorithm for locomotion is described that will work in any
system composed of cubic modules. This paper also presents
a rule set for distributed control of cubic modules when ob-
stacles are present in the environment.

Distributed approaches are taken by Murata, et al.
to reconfigure a system of two dimensional hexagonal
modules [7], and a system of three dimensional cubic
modules [8]. Yim et al. [16] and Zhang et al. [17] present
distributed algorithms to reconfigure three dimensional
rhombic docecahedral modules. Each of these algorithms
are probabilistic and require substantial message passing
between neighboring modules.

Our approach
This paper examines distributed motion planning strategies
for a planar metamorphic robotic system undergoing a re-
configuration from a straight chain to a goal configuration
satisfying certain properties. In our algorithms, robots are
identical, but act as independent agents, making decisions
based on their current position and the sensory data obtained
from physical contacts with adjacent robots. Our purpose is
to seek an understanding of the necessary building blocks for
reconfiguration, starting with algorithms in which no mes-

sages need to be passed between participating robots during
reconfiguration. Reconfiguration in certain scenarios, like
the ones presented in this and our earlier papers [12, 13, 14],
can be accomplished using algorithms that do not require
any message passing. Therefore, our algorithms are more
communication efficient than the distributed approaches of
[1, 7, 16] and [17].

In this paper, we consider two dimensional, hexagonal
robots like those described by Chirikjian [3]. Our proposed
scheme uses a classification of robot types based on con-
nected edges similar to the classification used by Murata et
al. [7] for connected vertices. In the algorithms presented in
this paper, each robot independently determines whether it is
in a movable state based on the cell it occupies in the plane,
the locations of cells in the goal configuration, and on which
sides it contacts neighbors. Robots move from cell to cell
and modify their states as they change position. Since the
robots know the coordinates of the goal cells, we show that
each of them can independently choose a motion plan that
avoids module collision.

In Section 3 we describe the system assumptions and the
problem definition. Section 4 describes our algorithm for de-
termining admissibility of a goal configuration and presents
a new graph traversal and weighting algorithm for planning
the reconfiguration. Section 5 presents a distributed algo-
rithm for reconfiguring a straight chain to an admissible goal
configuration. Section 6 introduces admissibility conditions
for obstacles and suggests a method for reconfiguration in
the presence of obstacles. Section 7 provides a discussion of
our results and future work.

3 System model

Assumptions about modules
The plane is partitioned into equal-sized hexagonal cells and
labeled using the same coordinate system as described by
Chirikjian [3].

Our model provides an abstraction of the hardware fea-
tures and the interface between the hardware and the appli-
cation layer.

- Each module is identical in computing capability and runs
the same program.

- Each module is a hexagon of the same size as the cells of
the plane and always occupies exactly one of the cells.

- Each module knows at all times:
� its location (the coordinates of the cell that it currently

occupies),� its orientation (which edge is facing in which direction),
and� which of its neighboring cells is occupied by another
module.

Modules move according to the following rules.

1. Modules move in lockstep rounds.
2. In a round, a module

�
is capable of moving to an

adjacent cell, ��� , iff (see Fig. 2 for an example)

(a) cell ��� is currently empty,
(b) module

�
has a neighbor � that does not move in

the round (called the substrate) and � is also adjacent
to cell ��� , and

(c) the neighboring cell to
�

on the other side of � �
from � , ��� , is empty.

3. Only one module tries to move into a particular cell in
each round.

(a) (b)

C2C2

M

S

M

S

C1

f
e

g

e
C3

f

g

Figure 2: Before (a) and after (b) module movement:
�

is
moving, � is substrate, and � � , ��� , and ��� are empty cells.

If the algorithm does not ensure that each moving module
has an immobile substrate, as specified in rule 2(b), then the
results of the round are unpredictable. Likewise, the results
of the round are unpredictable if the algorithm does not
ensure rule 3.

Problem definition
Our objective is to design a distributed algorithm that will
cause the modules to move from an initial configuration,

�
, in

the plane to a known goal configuration, � . This algorithm
should ensure that modules do not collide with each other,
and the reconfiguration should be accomplished in a minimal
number of rounds.

4 Admissible configurations

In this section we define admissible goal configurations
and describe a centralized algorithm that tests whether a
given configuration is admissible, i.e., whether it contains
an admissible substrate path. Informally, an admissible
substrate path is a chain of goal cells whose surface allows
the movement of modules without collision or deadlock,
provided the choices of module rotation and delay are ap-
propriate. That is, provided the motion planning algorithm
allows for adequate space between moving modules, there
are no pockets or corners on the surface of the substrate path
in which modules will become trapped or collide.

Admissibility definitions
Without loss of generality, assume

�
is a straight chain that

intersects � in exactly one cell on the perimeter of � . The
number of modules in

�
and the number of cells in � is � .

Figure 3 gives examples of orientations of
�

and � that sat-
isfy these assumptions in which ���	� . In this figure, cells in�

are numbered with solid borders and goal cells are shaded.

0
1

2
3

4
5

5

4

3

2

1

0

5
4

3
2

1
0

Figure 3: Example orientations of
�

and � .

Let � ��
 ����
����
 ��� be the columns of � , such that � �
is the column in which

�
intersects � and � � is the col-

umn furthest from column � � . Without loss of generality,
suppose that � is oriented such that column � � is the west-
ernmost column, ��� is the easternmost column, and each
column of � is a contiguous straight chain oriented north-
south. Figure 5 shows how the columns of � are labeled.

The assumptions concerning the relative positions of
�

and � can be made without loss of generality because if
�

is a straight chain that is not intersecting � , then the algo-
rithms presented in [13] for straight chain to straight chain
reconfiguration can be used to reorient

�
in relation to � .

Let a path � be a contiguous sequence of distinct cells,� �
 � �
����
 ��� . Then

Definition 1 A segment of � is a contiguous subsequence of
� of length ��� . In a south segment, each cell is south of the
previous and analogously for a north segment.

i-1

i

i

i

i

i-1

i

i

i

i

(b)(a)

 c

 c

 X
 Y

 Z

 c

 c

 X
 Y

 Z

Figure 4: Labels for north segment ending in ��� (a) and south
segment ending in � � (b) (cells that must not be goal cells are
shaded).

Definition 2 � is an admissible path if

1. each cell in � is adjacent to the previous, but not to the
west (i.e., consecutive higher numbered cells may not be
on the northwest or southwest side of a given cell),

2. for each north segment of � ending with ��� ,
(a) the cells labeled � � , � � , and � � in Figure 4(a) are not

goal cells and
(b) � ��� � , � ��� � , and � ��� � do not form any south segments,

and

3. for each south segment of � ending with � � ,
(a) the cells labeled � � , � � , and � � in Figure 4(b) are not

goal cells and
(b) � ��� � , � ��� � , and � ��� � do not form any north segments.

In the remainder of this paper, north and south segments
of � may be referred to as vertical segments when specific
direction of the segment is not important. Segments directed
to the east may be referred to as horizontal segments when
specific direction is not important.

Definition 3 � is a substrate path if

� � begins with the cell in which
�

and � overlap,
� subsequent cells are all in � , and
� � spans � , from column � � to column ��� .

Definition 4 G is an admissible goal configuration if there
exists an admissible substrate path in G.

The admissibility conditions for a substrate path are di-
rectly related to the degree of parallelism possible, i.e., how
closely moving modules can be spaced. If moving modules
are separated by only a single empty cell, they will become
deadlocked in acute angle corners when running our algo-
rithms [13]. However, acute angle intersections are very
commonplace in configurations of hexagonal robots. Thus,
we chose to make our algorithms applicable to a wide range
of goal configurations by separating moving modules by
two empty cells. Our definition of admissibility is therefore
based on configuration surfaces over which moving modules
with two empty cells between them can move without be-
coming deadlocked.

G
5

G
76

G
2

G
1

G
3 4

G

(b)

2
G

1
G

3 4 5 6
G G G G G

(a)

Figure 5: Example admissible (a) and inadmissible (b) �
(cells in

�
have solid borders and cells in � are shaded).

Figure 5 depicts an example of an admissible (a) and an
inadmissible (b) configuration of � .

Finding substrate paths
Our procedure for finding an admissible substrate path in �
proceeds in three steps:

1. Construct a directed graph � from � .

2. Weight the vertices in � and calculate the cost of all pos-
sible directed paths from each cell in � � to every cell in
column � � . Do this for all orientations of � for which
columns � � . . . ��� are contiguous.

3. Determine which paths in � have lowest cost and most
evenly bisect � . Select a substrate path and intersection
for

�
based on these criteria.

Step 1 is done as described in [14] and is only reviewed
briefly in this paper. Steps 2 and 3 have not been described
previously.

Constructing �
The graph � is initialized as follows:

� Label the columns of � as described in the beginning
of this section, with the cells in each � � labeled � ��� � ,
� ��� � , �� , from north to south.

� Represent each goal cell as a node in the graph � . Initially
there is an undirected edge between each pair of adjacent
goal cells.

mG

G1

Figure 6: Directed graph � formed by algorithm.

The columns of � are processed from east to west. First,
every node in column ��� is marked. As shown in Fig. 6,
each column west of column ��� consists of three segments:
(A) the north segment of nodes with no goal cells to the east
(shaded light gray), (B) the central segment of nodes that
have goal cells to the east (unshaded), and (C) the south seg-
ment of nodes that have no goal cells to the east (shaded dark
gray). Segment (A) of each column is initially skipped. Each
node in segment (B) is given an outgoing edge to each of its
marked east neighbors, with the exception of the situation
where a NE edge would be directed toward a neighbor with
an outgoing S edge or where a SE edge would be directed
toward a neighbor with an outgoing N edge. Nodes in seg-
ment (C) are processed north to south. Each node is marked
and given a directed edge to its north neighbor if the north
neighbor is marked and if the goal cells in the local neigh-
borhood satisfy the admissibility conditions for that edge to
be included in a substrate path. Finally, nodes in segment (A)
are processed south to north. Each node is marked and given
a directed edge to its south neighbor in a manner analogous
to the nodes in segment (C).

The arrows in Fig. 6 show the edges that are directed
and the direction given to the edges. The cross-hatched
cells are those that remain unmarked after the algorithm has
been run. The full pseudocode for this algorithm can be
found in [14]. We proved in that paper that the action of this
algorithm ensures that no inadmissible substrate paths will
be produced from directing edges in � .

Traversing and weighting �
We combine a weighting scheme with a graph traversal algo-
rithm for the purposes of assigning a weight to each path that
spans all columns of � . We describe the traversal algorithm
first, then the weighting scheme. As previously mentioned,
our technique traverses all potential substrate paths, and thus
provides a general technique for traversing all root to leaf
paths in a rooted DAG.

The TraverseGraph algorithm proceeds as follows:

� Initially, all vertices in � are white (unvisited).
� Let � be a marked cell in column � � . Then � is the root

of a DAG in � . Colour � black (visited).
� While � has white (unvisited) children, choose a child,� , and mark � as the parent of � .
� Colour � black and continue traversing from � .
� If � is a leaf and � ’s parent has a white (unvisited) child,

– then back up to � ’s parent and continue traversing
from there.

– else, if � is a leaf and � ’s parent has no white
(unvisited) children, color � and � ’s sibling white
(i.e., unvisit them) and back up to � ’s parent. Con-
tinue backtracking from there until reaching the
root.

The pseudocode for TraverseGraph and its internal pro-
cedure Backtrack is presented in Figure 7.

Procedure TraverseGraph(vertex �)

Initially, all ����� are white (unvisited) and parent ���
	 .
Let � = root of a DAG in � starting in column ���
1. color � black (visited)
2. if � has a white (unvisited) child
3. pick a child,
4. parent � := �
5. TraverseGraph()
6. else if parent ���� null // � is not the root
7. Backtrack(�)
8. end if

(a)
Procedure Backtrack(vertex �)

1. if parent � has an unvisited (white) child
2. TraverseGraph(parent �)
3. else if parent � has no unvisited (white) children
4. backtrackParent := parent �
5. color � and sibling � white //unvisit them
6. set parent � and parent ������� ����� � to null
7. Backtrack(backtrackParent)
8. end if

(b)

Figure 7: Pseudocode for Procedures (a) TraverseGraph and
(b) Backtrack.

Figure 8 shows an example of a graph traversal. In Fig-
ure 8(a), the root of the graph, � is colored black (visited),
while all other vertices remain white (unvisited). In Figure
8(b), a path from � to the leaf � has been traversed and all
vertices along the path are colored black. In Figure 8(c), the
algorithm backtracks to vertex � . Vertices � and � are col-
ored white (they are “unvisited”) since their respective par-
ents have no unvisited children. � remains black, however,

A
B

D

C

E

F
G

(a) (b)

(c) (d)

(e) (f)

A
B

D

C

E

F
G

A
B

D

C

E

F
G A

B
D

C

E

F
G

A
B

D

C

E

F
G A

B
D

C

E

F
G

Figure 8: Example graph traversal. Darker lines indicate
paths currently being traversed and small pointer indicates
node currently being visited.

since vertex � has not been visited. In Figure 8(d), a path
picking up at vertex � and continuing to leaf � is traversed.
All vertices on the path are colored black. In Figure 8(e), the
algorithm backtracks to vertex � . � is colored white while
� remains black since has not been visited. In Figure 8(f),
traversing continues from vertex � to the leaf � , completing
the last untraversed path in the graph.

To find all possible substrate paths in � , the graph traver-
sal algorithm is run once for each cell in column 1 of � that
has an outgoing edge (i.e., once with each cell in column � �
as the root). During each root to leaf walk, a vertex receives a
weight specified by the weighting scheme, described below.

We know from our previous work in [13] that straight
chains of modules in

�
can fill in collinear straight chains

or chains with single obtuse angle bends faster than they can
fill in chains with acute angle bends. For these collinear or
single bend goal configurations, we showed that the recon-
figuration can be done in optimal time because modules in

�
can initially alternate rotation directions and move from the
non-intersecting end of

�
without delay. Thus, to maximize

parallelism, we designed our weighting scheme to give the
lowest weight to straight or single bend substrate paths that
proceed horizontally across the columns of � .

We assign a separate weight value to each marked vertex
in � based on the direction of its incoming edge and that of
its parent’s incoming edge as follows:

� If a vertex has a vertical incoming edge, it has weight 10.
� Else if a vertex’s incoming edge is directed in a different

direction than its parent’s incoming edge, it has weight 1.
� Else if a vertex’s incoming edge is directed in the same

direction as its parent’s incoming edge, it has weight 0.

All nodes in column � � that have an outgoing edge are as-
signed weight 0.

The weight at each vertex on a directed path is summed
with the weights of its ancestors, creating a “cumulative

weight” for the vertex that represents the cost of the path
to that point. The weight of any leaf in � represents the to-
tal cost of the path from the root to that leaf. The cost of
each path is stored whenever a leaf is visited. Vertices are
unweighted during the backtracking phase of the algorithm
to ensure that a vertex’s weight is based on the correct parent
for each new path.

Vertices in columns numbered higher than 1 with in-
coming edges directed to the N or S are the most heav-
ily weighted in our algorithm because vertical edges always
form substrate paths with at least two bends in these cases.
When neighboring modules in

�
alternate rotation directions

to fill a “multiple bend” substrate path, a precise sequence
of initial module delays must be used to ensure that modules
do not collide on the substrate path. Therefore, if a substrate
path has multiple bends, we require that the modules in

�
that will fill the substrate path all rotate the same direction,
thereby sacificing parallelism in order to avoid collision.

It is clear that only paths formed by a straight, non-
vertical chain of modules will have a total cost of 0. Like-
wise, only paths with a single NE or SE bend and no vertical
segments will have a cost of 1. Figure 8(b) shows an exam-
ple of a cost 1 path. Since paths with one or fewer obtuse
angle bends can be filled most efficiently in terms of number
of rounds used, the paths of cost 0 and 1 are preferable for se-
lection as a substrate path. From our work in [14], we know
that substrate paths that bisect the goal allow us to achieve
the highest degree of parallelism, as they permit modules to
fill in the goal bidirectionally. Paths of cost 0 and cost 1 are
therefore processed before all other paths to determine which
path bisects the goal configuration most evenly.

In the event that a cost 0 or 1 path does not come within
one module of bisecting � , higher cost paths are considered.
As before, higher cost paths that split the goal equally or
almost equally are considered for selection first.

In the full paper, we prove that the TraverseGraph algo-
rithm traverses every path from � � to ��� in the graph � .

5 Distributed reconfiguration

In this section, we describe the distributed algorithm that
performs the reconfiguration of

�
to � after an admissible

substrate path is found using the algorithms described above.

Algorithm assumptions

1. Each module knows the total number of modules in the
system, � , and the goal configuration, � .

2. Initially, one module is in each cell of
�
.

3. � is an admissible configuration.
4.

�
and � overlap in one goal cell in column � � , as de-

scribed in Sect. 4.

Overview of algorithm
The algorithm works in synchronous rounds. In each round,
each module determines whether it is free (cf. Fig. 9). In
this figure, the modules labeled trapped are unable to move

due to hardware constraints and those labeled free represent
modules that are allowed to move in our algorithm, possibly
after some initial delay. The modules in the other category
are restricted from moving by our algorithm, not by hardware
constraints.

 Indicates non−contact edge

 Indicates contact edge

TRAPPED

OTHER

FREE

Figure 9: Contact patterns possible in algorithm.

Only module 0 (the module at the free end of
�
) can ini-

tially determine the exact time when it will begin moving.
Other modules in

�
rely on local contact information to cal-

culate their position in
�

and any possible delay after they
become free to avoid collision and deadlock. Once a mod-
ule begins moving, it has only the local information about
contacts with adjacent modules and its current coordinates
to guide its part of the entire system reconfiguration.

All modules except module 0 dynamically calculate their
position in

�
, direction of rotation, possible delay and final

coordinates in � by counting the modules in initial positions
further from the intersection of

�
and � as they pass, noting

the direction (CW or CCW) in which the passing modules
rotate. The module intersecting � does not move.

Let � be the array of coordinates of goal cells on the sub-
strate path (stored locally at each module), starting with the
cell that has an edge incoming from the cell in which

�
and

� intersect in column � � . Coordinates of goal cells to the
north and south of the substrate path are also stored in arrays
at each module. A module calculates the goal cell it will
occupy using its position in

�
, the length of the arrays of co-

ordinates on, north, and south of the substrate path, and the
current count of modules that have passed on both sides.

Modules fill in the substrate path first. Different patterns
of delay and rotation are selected, depending on whether the
cumulative cost of the substrate path is 0, 1, or greater than 1.
After every goal cell in � is filled, modules alternate rotation
directions, filling the columns projecting north and south of
� from east, � � , to west, � � .

Modules use specific patterns of rotation and delay, as
listed below.

1. (0,0)-bidirectional: modules alternate direction with no
delay after free.

2. (1,0)-bidirectional: modules alternate direction with delay
of 1 time unit after free for modules in positions ��� rotat-
ing CW and no delay after free for modules rotating CCW.

3. unidirectional: modules rotate same direction with delay
of 2 after free for modules in positions � 1.

The reconfiguration schema uses the cost of the substrate
path found in the previous section and proceeds as follows:
� For modules 0 through � ��� (i.e., those modules filling in

the substrate path):

– If cost = 0, modules 0 through � ����� � use (0,0)-
bidirectional pattern, with module 0 starting in CW
direction. Module � ��� begins the (0,1)-bidirectional
pattern, moving in the opposite direction from mod-
ule � ����� � with delay of 2 (unless there are no cells
to be filled in the opposite direction, in which case it
begins the unidirectional pattern).

– If cost = 1, modules use (0,0)-bidirectional pattern. If
the distance from module 0 to the “bend” is odd, mod-
ule 0 begins moving CCW, otherwise it begins mov-
ing CW. Modules enter the part of the substrate path
before the bend in the same order they begin moving.
Because of the bend in the substrate path, modules
arrive on the “tail” of the substrate path in a differ-
ent order than the order in which they begin moving.
Let � be the first module to choose a goal position in
the part of the substrate path after the bend, i.e., the
“tail” of the substrate path. If � is even, modules ar-
rive at their positions in the tail of the substrate path
in this order: �
���� �
	��� �
�����

�����
������
��������� .
Otherwise, if � is odd, modules arrive at their po-
sitions in the tail of the substrate path in this order:��� �
��
�����
	�����
������
�����

��� . The module in
position � ��� goes on the substrate path and the module
in position � ����� � does not when � and the “tail” of
the substrate path have different parity.

– If cost � 1, modules � ���� ����� � use the unidirectional
pattern in CW direction. Module � ��� begins (0,1)-
bidirectional pattern, moving CCW (unless there are
no cells to be filled in the CCW direction, in which
case it continues the unidirectional pattern).

– Each module stops in the goal cell on the substrate
path that it has calculated it should occupy.

� For modules in positions ��� ��� (i.e., these modules
climb over the substrate path to fill the rest of �):

– Modules use (1,0)-bidirectional pattern until all cells
either north or south of � are filled. After this, mod-
ules use unidirectional pattern, with either CW or
CCW direction.

– Each module stops in the goal cell to the north or
south of the substrate path that it has calculated it
should occupy.

� Once a module stops for a round in a goal cell, it never
moves out of that goal cell.

The pseudocode used by all free modules during each round
of the reconfiguration is shown in Figure 10. Local variables
at each module include:
� contacts: Boolean array indicating on which edges a mod-

ule has neighboring modules. Assumed to be automati-
cally updated at each round by some lower layer.

� position: Order of modules in
�
, starting at the end of

�
that is furthest from � . If the module is initially at distance
��� � from � , position ��� , otherwise position is calculated
by counting passing modules.

��� : Direction of movement, CW or CCW.
� flips: Counter used to determine whether the module is

free.
� delay: Number of time units module waits after it is free

and before it makes its first move. Initially 0.

In round ��� � � � � ������� :
1. if ((position �!) or (IsFree()))
2. if (delay � 0)
3. move "
4. end if
5. else
6. delay � � delay # �
7. Count modules passing in CW and CCW directions
8. end if

Procedure IsFree():
1. flips � �$
2. for (

� � �! to %) do
3. if (contacts[

�
] �� contacts[(

���
1) % 6])

4. flips++
5. end if
6. end for
7. return ((position - 1 is unoccupied) and

(flips � �) and (number of contact edges &'%))
Figure 10: Pseudocode for all modules from straight chain
to admissible � .

Each module calculates its rotation direction, delay before
moving, and final goal coordinates after it determines its po-
sition in

�
. Modules in their initial positions keep separate

tallies of other modules passing on the CW and CCW side.
For configurations with substrate path cost 0 or cost

greater than 1, the calculation of final goal position is
straightforward, since modules arrive in their calculated goal
cells sequentially in the order they begin moving. Because
of this sequential arrival pattern, modules in higher initial
positions have an accurate view of the destination for each
module that passed.

For configurations with substrate path cost 1, modules
need to adjust the count of modules passing in the CW and
CCW directions when the parity of � and the “tail” of the
substrate path is different. This is because modules arrive in
the “tail” out of order, i.e., the module in position � ��� that
modules with higher initial positions count as heading for
a goal position north or south of the substrate path actually
ends up in a position on the path. The pattern is predictable
and therefore easily computed locally at each module.

6 Obstacles

In this section we consider the presence of obstacles in the
coordinate system and present our preliminary ideas on re-
configuration in the presence of obstacles.

An obstacle is a sequence of one or more “forbidden
cells” that modules cannot enter. Modules may, however,

Figure 11: Admissible obstacles (shown in black) in three
goal scenarios. Goal cells are shaded dark gray and those on
the substrate path are starred.

touch obstacles and may use them as a substrate for move-
ment. We informally define an obstacle as having an admis-
sible surface if the perimeter of the obstacle is an admissible
path. We then require that either 1) all “obstacle surfaces”
adjacent to goal cells are admissible surfaces (when consid-
ering interaction with � and obstacles), or 2) that an admis-
sible surface(s) can be formed by “concatenating” the obsta-
cles with modules. Obstacles may occur at any location in or
around the goal. They may not, however, separate

�
from �

by completely enveloping � .
Examples of admissible obstacles are shown in Figure 11,

where the forbidden cells are black, the goal cells are gray,
and the goal cells on the substrate path are marked with an
asterisk. In each scenario of this figure, the substrate path has
incorporated the admissible surface to form an admissible
substrate path.

Using this definition of admissible surfaces, we intend to
cope with the presence of obstacles both inside, adjacent to,
and around � by first analyzing the admissibility of the com-
bination of obstacles, � , and

�
. We will choose a substrate

path and location for
�

that may include obstacles, and then
select the substrate path such that it includes the admissible
surfaces of obstacles if necessary. Modules will then move
normally across the surface of obstacles during reconfigura-
tion. For example, in Figure 12, the ground is treated as an
admissible obstacle when a buttress is needed to hold up a
skyscraper.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 12: Obstacle surface (ground) used as foundation for
reconfiguration.

7 Conclusions and future work

We have presented an algorithm for determining the sub-
strate path that permits flexibility in choosing a point of in-
tersection between the initial configuration and the goal and

allows for maximum efficiency in reconfiguration. We also
considered reconfiguration in the presence of obstacles, nat-
urally extending our definition of admissible substrate paths
to include obstacle surfaces.

We believe that this flexible approach will be helpful in
designing reconfiguration algorithms for more irregular con-
figurations, more asynchronous systems, and those with un-
known obstacles. Part of such a flexible approach will in-
clude the ability for modules to detect and resolve collisions
and deadlock situations when they occur, rather than precom-
puting trajectories that avoid these situations. We have some
initial ideas for ways to deal with module collision and dead-
lock on the fly, which we leave for future work.

References
[1] Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for modular

robots with unit-compressible modules. In Proc. of IROS 2001, to appear.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for decentralized
control of self-reconfigurable robots. In Proc. of the ICRA 2001 Workshop on
Modular Robots, 2001.

[3] G. Chirikjian. Kinematics of a metamorphic robotic system. In Proc. of IEEE
Intl. Conf. on Robotics and Automation, pages 449–455, 1994.

[4] G. Chirikjian and A. Pamecha. Bounds for self-reconfiguration of metamorphic
robots. In Proc. of IEEE Intl. Conf. on Robotics and Automation, pages 1452–
1457, 1996.

[5] K. Kotay and D. Rus. Motion synthesis for the self-reconfiguring molecule. In
IEEE Intl. Conf. on Robotics and Automation, pages 843–851, 1998.

[6] K. Kotay, D. Rus, M. Vona, and C. McGray. The self-reconfiguring robotic
molecule: design and control algorithms. In Workshop on Algorithmic Foun-
dations of Robotics, pages 376–386, 1998.

[7] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In Proc. of
IEEE Intl. Conf. on Robotics and Automation, pages 441–448, 1994.

[8] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A 3-D self-
reconfigurable structure. In Proc. of IEEE Intl. Conf. on Robotics and Automa-
tion, pages 432–439, 1998.

[9] A. Nguyen, L. J. Guibas, and M. Yim. Controlled module density helps re-
configuration planning. To appear in Proc. of 4th International Workshop on
Algorithmic Foundations of Robotics, 2000.

[10] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for modu-
lar robot motion planning. IEEE Transactions on Robotics and Automation,
13(4):531–545, 1997.

[11] D. Rus and M. Vona. Self-reconfiguration planning with compressible unit
modules. In Proc. of IEEE Intl. Conf. on Robotics and Automation, pages
2513–2520, 1999.

[12] J. Walter, J. Welch, and N. Amato. Distributed reconfiguration of hexagonal
metamorphic robots in two dimensions, in Sensor Fusion and Decentralized
Control in Robotic Systems III, Gerard T. McKee and Paul S. Schenker, eds.,
Proceedings of SPIE, Vol. 4196, pp. 441-453, 2000.

[13] J. Walter, J. Welch, and N. Amato. Distributed reconfiguration of metamorphic
robot chains. In Proc. of ACM Symp. on Principles of Distributed Computing,
pages 171–180, 2000.

[14] J. Walter, J. Welch, and N. Amato. Distributed reconfiguration of metamorphic
robots. Submitted, 2001.

[15] M. Yim. A reconfigurable modular robot with many modes of locomotion. In
Proc. of Intl. Conf. on Advanced Mechatronics, pages 283–288, 1993.

[16] M. Yim, J. Lamping, E. Mao, and J. G. Chase. Rhombic dodecahedron shape
for self-assembling robots. SPL TechReport P9710777, Xerox PARC, 1997.

[17] Y. Zhang, M. Yim, J. Lamping, and E. Mao. Distributed control for 3D shape
metamorphosis. To appear in Autonomous Robots Journal, special issue on
self-reconfigurable robots, 2000.

