
Accessible CSS: Proposal for an Accessible,
Comprehensive Validation Tool for Screen Reader Users

Claire Kearney-Volpe
New York University
New York, NY, USA

claire.kv@nyu.edu

Haoran Wen
Rutgers University

New Brunswick, NJ, USA
haoranwen1@gmail.com

Amy Hurst
New York University
New York, NY, USA
amyhurst@nyu.edu

ABSTRACT
As the Internet and web-enabled technologies become
ubiquitous and there is greater need for web-related jobs,
there is a lack of diversity and representation by persons with
disabilities. One factor contributing to this is that the
production –––of web technologies presents various
accessibility barriers for individuals that are blind or low
vision. CSS and visual styling are areas of particular
stumbling blocks that lacks easy, accessible, and
comprehensive tools for nonvisual CSS validation. CSS is a
core language and component of the web used to describe
visual representations and due to the visual nature of CSS
nonvisual developers struggle to with its use: often time
relying on sighted third party member to assist with
validating their CSS. In order to striving for a more diverse
participation, better accessibility support, and greater
independence of blind or low vision web developers we
evaluated existing CSS tool to aim for creating a accessible
CSS validation tool that would allow blind and low vision
web developers to build, test, and produce websites and web
applications with greater confidence and independence.

Author Keywords
Accessibility; Web Development; CS Education; Design;
Human-Computer Interaction

INTRODUCTION
As the Internet and web-enabled technologies become
ubiquitous and there is greater need for web-related jobs.
However, there is a lack of diversity and representation by
persons with disabilities in the US workforce. Although
employment in Computing and Information Systems reached
close to 4 million as of 2016 with significant growth
predicted for Web Development and Web Development

adjacent jobs [6], persons with disabilities are significantly
underrepresented [19].

This underlying reasons for underrepresentation is complex,
and includes socio-economic, educational, and systemic
barriers, but also a lack of accessibility in the tools for design
and development. For screen reader users, significant
barriers include the lack of accessibility informational
resources, inaccessible editors, and coding environments [3,
18]. With regard to web interface design and visual styling,
this task is extremely difficult for people that are blind. We
describe our work investigating the opportunity and need for
accessible CSS validation tools to increase participation in
web-development and adjacent fields.

RELATED WORK
Programming and Design Accessibility
Notable past work to increase computing diversity explored
making programming languages, software, and curricula
more accessible to blind students. This work has largely been
in the development of auditory interfaces, development
environment plug-ins for navigation, and novel
programming languages [4, 23, 24]. The user interface
design process is integral with web-development, and
unfortunately, little research has focused on accessibility.
Norman et al. found that nearly all of their blind participants
created websites collaboratively or kept CSS stylesheets
created by sighted developers on-hand as a reference [20].
Bennet et al. [5] conducted workshops in which participants
used a variety of common craft supplies for their tactile
qualities, improving design process accessibility
(specifically the ideation process).

CSS Validation
CSS is a core language of the web used to describe the visual
presentation of sites [17]. The process of validating CSS
starts with parsing CSS source code into an abstract syntax
tree structure. Once parsed into an abstract syntax tree,
validators traverse the tree comparing and verifying the
syntax against a chosen schema.

METHODS AND FINDINGS
We surveyed existing CSS support software by searching
Github [12], Google Scholar [13], and the ACM Digital
Library [2] using the search terms: CSS Tool, Design Tool,
CSS Validator, and Accessibility Checker. Through this
process, we found 10 CSS validation tools and evaluated
them for type, install/set-up, and accessibility.

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:
• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.
• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.
• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

We categorized each tool into one of three types: 1) CSS
Syntax, 2) Computed Style, and finally 3) Automated
Accessibility validators that in analyze semantic html, and
evaluate color contrast, text size, element spacing, and other
visual properties. Our second categorization, install and
setup, refers to the installation process for this tool. These
tools worked through the command line, through a web page,
or browser extension. Finally, our “accessibility category
relates to use with a screen reader. We tested each validator
with Voiceover using the Safari web browser. For syntax and
automated accessibility validators that operate through the
command line, web app, or browser extension, each had
good support for use with a screen reader. Conversely, the
Computed Style tools had variable support for use with a
screen reader. Each of the Computed Style tools that we
evaluated operated through the command line or by
including a reference to a library in the user’s code. This
install/set up is accessible, however the outputs of these tools
had variable support for use with a screen reader. For
example, the Computed Variable [11] tool is a JavaScript
plugin and results are rendered as visual indicators (drop
shadows, etc.) on elements and only on hover by default.
Table 1 shows examples of each type of validator with
information about install/set up and accessibility.

We also used this survey to better understand how each type
works. CSS Syntax validators compare written CSS to the
W3C CSS standards. Computed Value validators extract
rendered CSS from browsers and compare these values with
written CSS, or a design schema. And finally, Automated
Accessibility validators are able to parse extrapolate and
check for color values, tab index, properly label properties,
and aria tags and other defined properties.

Name Validator
Type

Install/Set up Accessibility
Support

Jigsaw CSS Syntax
Web App, with
style sheet
uploader

Yes

Computed
Style to
in-line
Style

Computed
Style

Command line
tool requiring
NPM install

No

Wave Automated
Accessibility

Web App, and
browser
extension

Yes

Table 1. Survey and evaluation of CSS validation tools.

Each of these tools have use in a developer workflow based
on type, however none are comprehensive (incorporate each
type of CSS validation), and there is inconsistent support for
beginner web developers and screen reader accessibility.

Gaps and Opportunities For Teaching and Learning
Our past work teaching web development to screen reader
users confirms the need for a simplified, comprehensive, and
accessible software tool, and the impact of not having one.

During a 7-day Web-Development training, we taught adult
screen reader users HTML, CSS, and JavaScript at a
technology camp in Uganda [15]. During a unit on CSS, we

used a color naming tool that we previously created with
mixed success. This web-based tool took red, green, and blue
values from a text input, generated a web color and color
name, and announced the name to screen readers. Students
that had partial sight or had lost their vision were much more
responsive to the tool. Students that experimented with using
both foreground and background colors, had difficulty
selecting pleasing color contrasts for sighted users was a
challenge (Figure 1). In a post-course focus group,
participants expressed wanting more support and would
prefer to use a design framework/system that helped with
visual design (specifically grid layouts and color palettes).

In a 10-day intensive Web-Development workshop at New
York Public Library’s Braille and Talking Book Library, we
observed 14 beginner participants struggle with using
command line tools, incorporating box-model/layout styles,
and sourcing and using images without distortion/pixilation.
At the time of this workshop (August 2018), our participants
struggled because Webaim’s color contrast analyzer [28] did
not support use with a screen reader.

Figure 1. Blind student’s website with color contrast issues of

blue text on a green background with a red border.

Drawing from all of our observations teaching web
development to screen reader users, we have noted the
following use cases for a CSS tool: 1. CSS syntax is correct,
but font files not loaded/referenced properly, 2. An image
file is loaded, but rendered too large and becomes
distorted/skewed/pixelated, 3. CSS is written properly, but
color contrast fails WCAG standards, and 4. Padding and
margins are rendered as text in CSS, but doesn’t match with
the rest of the page’s content.

RESULTS
Based on our literature review, validator evaluation, and
observations of screen reader users working with CSS, we
have identified the need for a new comprehensive, accessible
CSS validation tool. The current tools we found do one or
two things really well, but do not satisfy all of the use cases
identified. So we developed a CSS validator tool that verifies
CSS syntax, Computed Styles (checking against design
system schemas), and Accessibility validation. The validator
functions as a website where the user would upload their
code for validation and the respective results would be
displayed to them. This tool is developed with the target
audience of screen readers users who are brand new to
development in mind.

CONCLUSION
Ubiquity of web and web-enabled technologies presents
greater risk of accessibility-related barriers to participation
in the digital economy. We are also faced with opportunities
to create a more diverse and accessibility-aware workforce.
With this work, we contribute an overview of existing Web-
Development Style Tools (CSS validators), and use-cases

based on our observations of screen reader users
implementing CSS. Finally, we propose the design of a new
comprehensive, easy-to-use, and accessible CSS Validator.

ACKNOWLEDGMENTS
We thank our research/workshop participants. We also thank
the NYU ability project, Access Computing, and the CRA-
W DREU program for their support.

REFERENCES
1. Accessibility Insights for Web. Retrieved from

https://accessibilityinsights.io/docs/en/web/overview
2. ACM Digital Library. Retrieved from

https://dl.acm.org/
3. K. Albusays, and S. Ludi. 2016. Eliciting programming

challenges for developers with visual impairments
survey. Retrieved December 12, 2019 from
https://people.rit.edu/
kla3145/Research/pdf/BlindProgrSurvey.pdf

4. Catherine Baker, Lauren Milne, and Richard Ladner.
2015. Structjumper: A tool to help blind programmers
navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, 3043–3052.
DOI: https://.org/citation.cfm?id=2702589

5. Cynthia L. Bennett, Kristen Shinohara, Brianna Blaser,
Andrew Davidson, and Kat M. Steele. 2016. Using a
Design Workshop To Explore Accessible Ideation. In
Proceedings of the 18th International ACM
SIGACCESS Conference on Computers and
Accessibility (ASSETS '16). ACM, New York, NY,
USA, 303-304. DOI:
https://doi.org/10.1145/2982142.2982209

6. Bureau of Labor Statistics. Occupational Outlook
Handbook: Web Developers. Retrieved from
https://www.bls.gov/ooh/computer-and-information-
technology/web-developers.htm#tab-8

7. Computed Style to in-line Style. Retrieved from
https://github.com/lukehorvat/computed-style-to-
inline-style

8. Crass. Retrieved from https://github.com/rgrove/crass/
9. CSS Accessibility Validator. Retrieved from

https://github.com/elad2412/css-accessibility-validator
10. CSS-Check. Retrieved from

https://github.com/elifesciences/css-check
11. Computed-Variables. Retrieved from:

https://github.com/tomhodgins/computed-variables
12. Github. Retrieved from https://github.com/
13. Google Scholar. Retrieved from

http://scholar.google.com/
14. JQuery computed-style plugin. Retrieved from

https://github.com/jamierumbelow/jquery.computed-
style

15. Claire Kearney-Volpe, Scott Fitzgerald, and Amy Hurst.
2019. Blind Web Development Training at Oysters and
Pearls Technology Camp in Uganda Proceeding from
the 16th International Web for All Conference:
Addressing Information Barriers, San Francisco, CA,
USA. (to appear)

16. Ali Mesbah and Shabnam Mirshokraie. 2012.
Automated analysis of CSS rules to support style
maintenance. In Proceedings of the 34th International
Conference on Software Engineering (ICSE '12). IEEE
Press, Piscataway, NJ, USA, 408-418.

17. Mozilla. CSS: Cascading Style Sheets. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/CSS

18. Rahul Kumar Namdev and Pattie Maes. 2015. An
interactive and intuitive stem accessibility system for the
blind and visually impaired. In Proceedings of the 8th
ACM International Conference on Pervasive
Technologies Related to Assistive Environments
(PETRA '15). ACM, New York, NY, USA, Article 20,
7 pages. DOI:
https://doi.org/10.1145/2769493.2769502

19. National Science Foundation. 2017. Women Minorities,
and Persons with Disabilities in Science and
Engineering. Retrieved from
https://www.nsf.gov/statistics/2017/nsf17310/static/do
wnloads/nsf17310-digest.pdf

20. Kirk Norman, Yevgeniy Arber, and Ravi Kuber. 2013.
How accessible is the process of web interface design?.
In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and
Accessibility (ASSETS '13). ACM, New York, NY,
USA, , Article 51 , 2 pages. DOI:
http://dx.doi.org/10.1145/2513383.2513385

21. PrettyCSS. Retrieved from
https://github.com/fidian/PrettyCSS

22. Henrik Svarrer Larsen and Per-Olof Hedvall. 2012.
Ideation and ability: when actions speak louder than
words. In Proceedings of the 12th Participatory Design
Conference: Exploratory Papers, Workshop
Descriptions, Industry Cases - Volume 2 (PDC '12), Vol.
2. ACM, New York, NY, USA, 37-40.
DOI=http://dx.doi.org/10.1145/2348144.2348157

23. J. Sánchez, and F. Aguayo. 2004. “Listen what I do:
Blind Learners Programming Through Audio,”
Memorias TISE, 120-124.

24. A. Stefik, C. Hundhausen, and D. Smith. 2011. On the
design of an educational infrastructure for the blind and
visually impaired in computer science. In Proceedings
of the 42nd ACM technical symposium on Computer
science education, ACM, (March 2011), 571-576.

25. Wave (Web-based). Retrieved from
https://wave.webaim.org/

26. Wave (browser plug-in). Retrieved from
https://wave.webaim.org/extension/

27. W3C Jigsaw. Retrieved from https://jigsaw.w3.org/css-
validator/

28. Webaim. Web Accessibility in Mind: Color Contrast
Checker. Retrieved from
https://webaim.org/resources/contrastchecker/

