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Abstract. Despite using current motion planning algorithms to inves-
tigate and find paths within a workspace, it is difficult and inefficient
to evaluate vastly complex and different environments with a standard
planning strategy. We introduce a biasing planning strategy, using spe-
cific metrics tailored to the environment in order to discover the most
desirable paths faster. In regards to protein environments, we use mo-
tion planning algorithms to evaluate and understand the accessibility of
a drug molecule (ligand) to a binding site within a protein. To better pre-
dict the ligands path to the site, we bias our planning strategy towards
lower energy pathways by annotating our protein model with biometrics,
such as energy or clearance, resulting in a more informed and accurate
model of the accessibility routes.

1 Introduction

Motion planning refers to the process of finding an obstacle-free path for robots,
given a starting point and a goal destination. Some applications of motion plan-
ning includes computational biology, prototyping and graphics [1]. A variety of
problems involving a "robot” subject and a target can be formulated as a motion
planning problem.

Although these problems can be boiled down to a geometric problem, it is
computationally hard to plan for robot navigation because of how difficult it is
to capture all the robot constraints and represent the environment as a simple
model to a computer.

* This work was performed at the Parasol Lab-UIUC during Summer 2019.



There has been much research done on creating faster and more complex
planners. Currently, existing motion planning methods use the workspace prop-
erty to guide planning process. To map out the workspace, the free space, or
areas of valid configurations, is constructed from the environment’s properties.

Narrow passageways and complex environments has always been a persistent
dilemma for motion planning algorithms, and there has been many different
approaches to build an algorithm robust enough. One such strategy is guided
motion planning. A skeleton based on the environment’s topology is first created
before the planning phase begins. The planner will then build its roadmap based
on the regions represented by the skeleton.

Still, even with the use of state-of-the-art skeleton-guided planners, it is diffi-
cult to explore specific regions in a complex environment. The protein’s topology
alone is not enough information to efficiently explore the space. In addition, while
looking at the applications where guided motion planning would be useful, not
only does finding a path matter, but the quality of the path matters as well. For
example, in a robotics environment, where you want the robot to traverse the
safest space, you would want the paths of the highest clearance. In a protein en-
vironment, where you would predict the protein structure to remain in its most
stable configuration, you would want the paths of the lowest energy.

Our Contribution: We introduce the idea of using metrics for biasing
workspace exploration. More specifically, we use workspace properties such as
clearance and energy to guide the planning process for the robotics and protein
application of motion planning. Both metrics are useful in problems which have
a strong correlation to their workspace geometry.

Robotics (Clearance): In robotics, we use clearance to guide how a robot
explores its environment. Using the clearance metric, we can find safer paths in a
faster time, while also addressing the bottlenecks of the state-of-the-art planning
method (sampling-based planning).

Protein-Ligand Binding (Energy): We can extend this method to the
Protein-Ligand Binding problem in computational biology. Ligands are small
drug molecules that when interacted with proteins, change their shape and func-
tionality. These interaction regions are known as binding sites and can be located
within the protein’s inner hull. We can study the protein as a geometric and
energetic problem, applying both the clearance biasing method as well as an
additional energy metric biasing method. These metrics can help gain insight on
how a ligand navigates around the tunnels of the protein. Only recently, protein-
ligand binding methods began considering the feasible paths a ligand can take
to the binding site. Previous work mainly focused on the final fit of the ligand
to the binding site, without considering the path the ligand must traverse to
reach its goal. Current work studies these possible paths, investigating how the
protein’s tunnels can regulate the accessibility of certain ligands to the site [3].

Our method strives to understand and evaluate the tunnels of the protein
that the ligand would most likely be able to access in order to reach the binding
site. Not only is accessibility of a tunnel important, but probability of a tunnel
being a true path a ligand could take should also be taken into account. In order



to gain insight on meaningful tunnels, we want to find tunnels of high volume
and low energy for which the protein-ligand complex will increase in stability [3].
With our biasing planning strategy, we can narrow our search of our environment
to a certain criteria, and thus investigate and hone in on meaningful tunnels
faster. Using a comparison experiment between a non-biasing planning strategy
and two biasing strategies (clearance and energy), we can show improvements
in efficiency in how we search the environments.

Our experiments show that using our metrics to bias our planning, we are able
to generate desirable paths faster for both the robotics and protein application
of motion planning.

2 Related Work

In this section, we would discuss the preliminaries of our work.

2.1 The Motion Planning Problem

Motion Planning is also known as the geometry path planning problem. A con-
figuration represents a complete specification of the position of every point on
the robot. And the set of all the possible configurations of the robot is known as
the Configuration Space Cspace. The Cgpace is made up of Obstacle Space Copst
and Free Space Cpree. Copst is the set of all configurations which lies in one or
more obstacles, and Cpgpe. represents the set of all configurations that are not
in Copst.

The configuration space is an abstract model of the physical environment
of the robot and obstacles, know as workspace. As such, this model does not
capture all the possible constraints of the workspace. The robot is represented
as a configuration in Cgpgce-

The motion planning problem is defined in Cspqce as follows: Given a start
configuration (¢s € Crree) and a goal configuration (g3 € Cpree). Return a
continuous path, p : [0,1] = Cppee such that p(0) = ¢, and p(1) = g,.

Other non-robotics applications can be formulated as a motion planning
problem, if they can be map to the geometric definition given above. For ex-
ample, the study of Protein-Ligand interaction is a motion planning problem,
where the robot is the ligand, and the geometric representation of the protein is
the workspace.

Protein-Ligand Binding Problem A protein is a large structure made up of
a chain of amino acids that interacts in several essential reactions in the body [3].
These reactions can include binding with a small drug molecule called a ligand.
The region the ligand interacts with on the protein is known as the binding site.
Once the interaction occurs, the protein’s shape and functionality can change.
Recent research indicates that the molecular tunnels of the protein regulate
the accessibility of ligands and is dependent on those ligands’ specific character-
istics. These tunnels show a connection with how binding site activity behaves.



Investigating how the ligand is able to travel to the binding site can provide in-
sight in how protein-ligand binding works and how to predict certain biological
phenomena.

2.2 Sampling Based Planning

This is one of the approach to solving the motion planning problem. This ap-
proach avoids creating an explicit construction of Copst, instead they treat
Cspace @s a blackbox, and randomly sample configurations in Cgpace using a
collision detection check to see if it’s valid, and builds a roadmap, which is then
searched for a valid path. a roadmap is a topological graph, which ever vertex
represents a configuration, and each edge is a path connecting two configura-
tions. Collision Detection Check is a black box which defines if a configuration
is value or not. Collision Detection Checks are expensive because they involve
translating the problem between Cgpece and workspace. Another bottle neck
for this approach is narrow passages. Narrow passages-parts of the environment
where the probability of sampling a valid object position is low. Sampling-based
planners have a hard time finding narrow-passages.

Rapidly-exploring Random Trees (RRTs) A Rapidly-exploring Random
Tree (RRT) is a sampling-based planner which takes a tree-based approach to
solving the motion planning problem. Tree-based planners are planners that
builds a tree roadmap during planning. At each extension attempt of an RRT, it
generates a random configuration, ¢,qnq which is connected to the nearest con-
figuration, gueqr, If there no obstacles exist between ¢,qng and gpeqr- RRTs are
good for solving single query problems and they tend to explore the workspace
better than other sampling-based planners.

Probabilistic Roadmap (PRM) PRM takes a graph based approach to solv-
ing the motion planning problem [2]. This planning strategy creates a graph or
roadmap by repeatedly generating random possible configurations and then at-
tempting to connect them. As a result, the graph that is created will be entirely
in free space since the planner will check for collisions when connecting the
roadmap.

PRM has an advantage over other planning strategies because it is able to
handle multiple queries. In other words, PRM can search and find multiple paths
with a single generated roadmap.

2.3 Guided Motion Planning

Topological Guidance Topological guidance involves using the workspace
structure to direct how sampling based planners like PRM and RRT explores
the environment.



Some motion planning approach to the motion planning problem utilizes the
workspace decomposition [] for planning, specifically for targeting narrow pas-
sages. The workspace decomposition involves partitioning the workspace into
tetrahedral which are used to bias the sampling process. Such an approach fo-
cuses on the narrow passage bottlenecks of motion planning, but they result in
oversampling in some regions as opposed to others using these approach.

Another approach is the used of Skeletons made from the workspace decom-
position to bias sampling in Cgpace []. Workspace Skeletons are graphs which
captures the topological features of the environment. The Bias-guided method
relies on topological guidance sampling-based planners. The goals of our method
is to exploit the topological properties of such methods using metrics that are
beneficial to specific workspace corrolated problems. As mentioned in the intro-
duction, our method is applied to DR-RRT and DR-RRG. For both skeleton-
guided planners, we use Mean Curvature Skeleton (MCS) for generating our
workspace skeleton [7].

MCS constructs the workspace skeleton using a mesh-based algorithm to
compute its skeletal representation from the mean curvature flow of surfaces in
the workspace.

Planning We use different planners to build our roadmap based on the motion
planning problem. Like mentioned before, there are different sampling planning
methods that would have advantages in certain environments over others. We can
augment the previously discussed sampling based planning methods in section
2.2 with a dynamic region-biased strategy [7].

Dynamic region-biased strategies guide the planner to sample only from par-
ticular regions based on the workspace topology. A skeleton, or graph that maps
the essence of the free workspace topology, will be created to direct where to
select the regions from. These regions will then be created, sampled from and
then destroyed as the planner explores narrow and complex passageways.

Dynamic Region Rapidly-exploring Random Tree (DR-RRT) is a skeleton-
guided RRT which uses the workspace skeleton to bias RRT growth. In other
words, the planner will grow the tree from samples generated inside the se-
lected region and will advance to the next region once those regions have been
represented. DR-RRT is faster and returns lower collision detection calls when
compared to basic RRT.

Dynamic Region Rapidly-exploring Random Graph (DR-RRG) is a skeleton-
guided strategy that combines PRM and RRT [8]. Like the DR-RRT strategy,
the planner will choose a region to sample from using RRT; however, it will then
attempt to connect these samples to form a roadmap to increase connectivity.
DR-RRG has advantages in increased efficiency with multiple queries.

3 Method

The Bias-guided method is designed for skeleton-guided RRTs and applied to
DR-RRT for the robotics application and DR-RRG for the protein application.



In this section, we discuss how the algorithm works and give a detail example of
its planning process.

3.1 Algorithm Overview

Our method is designed for skeleton-guided RRTs and applied to DR-RRT or
DR-RRG for the robotics application and DR-RRG for the protein application.
The dynamic region method utilizes workspace properties such as clearance and
energy to guide how skeleton-guided planners generate roadmaps. Algorithm 1
details a general dynamic region planning strategy, called DR-RDMP for sim-
plicity in our explanation. This general algorithm will be slightly modified in
regards to DR-RRT and DR-RRG in how the planner will grow its roadmap
(line 8).

Algorithm 1 Bias-guided DR-RDMP

Input: Environment env, Start s, Goal g,
Bias Metric (min/max, clearance/energy) biasMetric
Output: Path p
1: WS « GetWorkspaceSkeleton(env)
AS < AnnotateSkeleton(W.S)
g s
r < GetInitialRegion(W S, s)
while —done do
Cr < GetChildren(r)
r < SelectRegion(C,, biasMetric)
R < GrowRDMP(r)
end while
: p < Query(R,g)
: return p

—

—

In order to go in depth with our algorithm, we will be using the 3D Maze-
Tunnel environment (Figure 1) as an example.

Generally, our method will take in the environment, a start and a goal query
as input. In addition, it will also need the bias metric, energy or clearance, and
if the planner should favor the maximum or minimum values of those metrics.

With the input of the environment, the algorithm will be able to decompose
the areas of free space into geometric tetrahedral shapes. With this, we will
able to generate our workspace skeleton described in section 2.3. In Figure (1b),
you can see that the skeleton, colored in green, is able to cover and represent
the major regions of free space around and inside the MazeTunnel. For the
generated workspace skeleton, we annotate it with properties such as clearance
and energy. The resulting annotated skeleton can be seen in Figure (1c), which
is augmented with clearance values. The Annotated Skeleton colors the highest
clearance regions starting with red, and then to yellow with the lowest clearance
being green and then blue.



(a) gs (red), qq (c)  Annotated
(blue) (b) Skeleton skeleton

(d) Planning

Fig.1: Example execution of the Bias-guided method: (a) env with ¢ and gg;
(b) MazeTunnel Workspace Skeleton (green) (c) Workspace Skeleton annotated
with clearance value ( red highest clearance, blue low clearance) (d) Minimum
clearance-bias exploration process (half-way).

Using this skeleton, we direct the planning process based on the annotated
properties. To begin building our roadmap, the start of the roadmap will be
placed at the goal configuration. This will ensure that the algorithm can explore
as many paths or tunnels that will lead to the goal (line 3). Our algorithm will
then build its roadmap by selecting a region based on the biased annotations
of the skeleton, sample from that region and then grow the roadmap (line 5-8).
In Figure (1d), roadmap construction is guided towards regions with minimum
clearance value.

How the algorithm grows its roadmap varies slightly between DR-RRT and
DR-RRG. In line 8, DR-RRT will extend its roadmap by connecting the new
samples to the original connected tree. DR-RRG will instead extend its roadmap
by creating smaller graphs from connecting the k closest samples to one another.

After the roadmap is successfully built, this concludes the guided planning
step. The query phase can be performed after to find the paths to the goal (line
10).

3.2 Metrics

This section covers detailed description of the metrics used for the Bias-guided
method.

Computing Clearance Clearance is defined as the size of free space between
obstacles in the environment. Given a workspace skeleton, we compute clearance
using the skeleton node and the point closest to the nearest obstacle. The dis-
tance between this point and the skeleton node is what we define as its clearance
value.



To annotate the workspace skeleton with its clearance value, we do the fol-
lowing: Calculate the clearance value of every node in the workspace skeleton.
Then, the edge clearance value is assigned as the maximum or minimum node
clearance value, which makes up the edge. We pick the maximum node clearance
for minimum Bias-guidance and minimum node clearance for maximum Bias-
guidance. This way, we ensure that we select the best option available for each
step of the planning process.

Computing Energy-value Our energy function calculates the energy of each
region based on Van der waals interactions, which are weak intermolecular forces
between two atoms or molecules [9]. How strong the attraction between two
atoms are determined by the distance they are from one another; as the atoms
move closer the energy of the system decreases, but if they come too close the
atoms start to repel each other and dramatically increase the energy. The energy
values the function outputs for is determined by first discretizing the workspace
into grid cells and determining the influence of the force of every atom of the
protein on the ligand.

The workspace skeleton energy annotation is defined as follows: For each
edge in the workspace skeleton, we calculate the energy of its nodes. We assign
the highest node energy value as the energy value of the edge for minimum
energy-bias, and the lowest node energy value for maximum energy-bias.

3.3 Visualization Tools

In the same way the skeletons are visualized in Figure (1b), we needed to help
visualize the biasing effect of our new strategy. Our current motion planning
visualization tool called Vizmo++ is useful in being able to interact and visualize
with skeletons, environments and roadmaps. In order to test how well our biasing
strategy will influence the construction of the roadmap, we decided to develop a
feature that is able to color the skeleton with the annotation values. The feature
is compatible with both clearance and energy annotations, and can be adaptable
to show any given amount of intervals in colors. In Figure (1c), it pictures our
annotated skeleton with red being areas of highest clearance and blue being areas
of lowest. The feature is extremely useful not only for debugging purposes, but
showing the advantages of using the biasing strategy.

4 Experiments

We tested our method in robotics and protein environments. The Bias-guided
method is implemented in C++ using the Parasol Motion Planning Library
(PMPL) and Standard Template Adaptive Parallel Library (STAPL); both li-
braries are developed in the Parasol Lab. All the experiments were run on a
3.40GHz Intel Core i7-3770 CPU.

We use the motion planning visualization tool, Vizmo++. Vizmo++ is de-
veloped at the Parasol Labs. And it is used for viewing and editing motion
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Fig. 2: Obstacles robotics environment

planning problems and their resulting roadmaps, or solution. For our experi-
ments, we use Vizmo++ to visualize the robotics and protein workspace, and
the solution returned from the strategies.

Environment|Strategy Runtime| CDC|Nodes|Edges|Path Clearance
Obstacles Regular DR-RRT 0.33| 87,841| 267| 531 5.05
Max Clearance-bias 0.18(40,510| 131| 260 6.12
Min Clearance-bias 0.22] 52,287 177 353 3.40
MazeTunnel Regular DR-RRT 0.46| 11,553 98| 194 0.93
Max Clearance-bias 0.18| 6,158 65| 127 0.92
Min Clearance-bias 1.45| 28,077 88| 173 0.85

Table 1: Robotics experiment results. Bolded values indicate the best value for
each environment. The best value for Runtime, CDC, Nodes, and Edges is the
lowest number in the column, while the best value for the Path Clearance is the
highest number, which indicates the safest path.

4.1 Robotics Experiments

Environment Setup In the robotics experiments, we compare our method to
the regular DR-RRT. We used DR-RRT because it is a skeleton-guided RRT
that utilizes the workspace decomposition for directing RRT growth.

We ran our experiment in MazeTunnel (Figure 3a), and Obstacles (Figure
2a) using holonomic robots. Both environments have wide and narrow passage
options. We selected these 3D environments to demonstrate the process of our
method and its advantages in such situations. For the workspace skeleton, we use
the Mean Curvature Skeleton (MCS). MCS provides a better workspace skeleton
for environments with convex bodies like the MazeTunnel environment, but the
skeleton quality is not ideal for environments with complex concave bodies.

Each experiment ran until the query was solved. We performed trials us-
ing ten random seeds for each strategy in both environments, and we averaged
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Fig. 3: MazeTunnel robotics environment

the following over all the trials: runtime, nodes, edges, collision detection calls
(CDC), and path clearance.

(a) Regular DR-RRT (b) Max Clearance-bias (¢) Min Clearance-bias

Fig. 4: The Roadmap and path from running the different strategies in Obstacles.

Result: Table 1 contains the data collection from the robotics experiment.
Runtime is the time (in seconds) taken for each strategy to find a path. CDC is
the amount of collision detection checks performed while the strategy runs. Nodes
and Edges refer to the number of nodes and edges in the resulting roadmap.
And Path Clearance is the clearance value of the path return by the strategy.
Runtime, CDC, Nodes, Edges, and Path Clearance are averaged over all the ten
trials performed. Figure 4 and 5 shows the roadmap (in black) and the resulting
path (highlighted) from running the experiments in Obstacles and MazeTunnel
environment.

Discussion: In Obstacles, the results table 1 notes that both minimum and
maximum clearance-bias have lower CDC than regular DR-RRT. The resulting
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Fig.5: The Roadmap and Path from running the different strategies in Maze-
Tunnel.

roadmaps with these strategies also have fewer nodes and edges when compared
to regular DR-RRT. Minimum clearance-bias returns the path with the lowest
clearance value, while maximum clearance-bias returns the path with the widest
clearance. The Bias-guided method also returns the safest path in the quickest
time using maximum clearance-bias.

Maximum clearance-bias returns the widest path in MazeTunnel with lower
CDC, nodes, and edges when compared to regular DR-RRT. And it is the fastest
strategy in MazeTunnel. Minimum clearance-bias was the slowest, but it had
fewer nodes and edges than regular DR-RRT.

From our experiments, we found that biasing roadmap construction using
a workspace property such as clearance, help speed up the planning process in
robotics environments like Obstacles and MazeTunnel.

4.2 Protein Experiments

Environment Setup For the protein experiments, we conduct a comparison ex-
periment between the energy-bias method, the clearance-bias method and a non-
biased planning method. We biased towards minimum energy for the energy-bias
method and maximum clearance for the clearance-bias method. As mentioned in
the related work, the non-biased planning method follows the same guided plan-
ning, but chooses regions to sample from based on the protein’s topology rather
than energy or clearance. For these complex protein environments, the planner
we use for all three methods is a Mean Curvature Skeleton guided DR-RRG.
We chose to use the Mean Curvature Skeleton (MCS) on each of the protein
environments because MCS is able to find more regions in a complex concave en-



vironment like these proteins. Thus, it will be better in assessing the effectiveness
of the biasing methods in these particular environments.

The data for the protein environments were obtained from the Protein Data
Bank (PDB) [5], and its corresponding geometric model was extracted using
UCSF Chimera [6]. The ligand was obtained in a similar manner, extracting its
geometric model from a PDB file with our own custom script.

As for the experiment setup, we ran all three methods for four different
proteins (3fbw, 4fwb, 3rk4, hzg), which all bind to the same type of ligand
(3KP). For each protein we ran all three strategies for 10 different seeds. The
planner will stop building the roadmap once a specified number of nodes are
built outside the hull of the protein. The resulting roadmap and tunnels that
were explored will then be observed and analyzed.

Result The 10 runs done for each strategy and their corresponding protein were
analyzed together. Table 2 displays the results for the planning step for each of
the runs. The median of the runtime, the size of the roadmap in nodes and edges,
and the number of tunnels found were calculated across each of the 10 seeds.
The bolded values in the table are the energy biasing values to help highlight the
differences between the strategies. We also observed which tunnels the strategies
explored and how their characteristics compare to each other. Figure 6 displays
the roadmaps built from three example runs from the three strategies. The energy
and clearance biasing strategy are displayed with the annotated skeleton to see
the biasing clearer.

Protein|Strategy |Runtime|Nodes|Edges| Tunnels
default 173| 644| 2878 12
3fbw  |energy 121| 413| 2534 12
clearance 160/ 616| 2546 10
default 273|772 3202 12
3rk4 energy 318| 693| 2683 11
clearance 329 428| 1904 9
default 125 559| 2421 8
4fwb  |energy 125| 492| 2183 9
clearance 122 472| 2389 12
default 123| 455| 1907 8
4hzg  |energy 169| 350| 1649 11
clearance 141 454| 1984 11

Table 2: Experiment Results - Comparison of strategies
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Fig. 6: Example roadmaps built from default, energy biasing and clearance bias-
ing planning strategies

Discussion As shown in table 2, each of the strategies finished in similar times
for each environment. In that time, the bias strategies created a smaller, tighter
roadmap. As shown in figure 6, both the clearance and energy bias strategies
have explored towards favorable regions of the skeleton, which are colored in
warmer red or orange colors. The biased roadmaps congregate around these low
energy, high volume areas, indicating that the strategies were able to find more
of these favorable tunnels.

The number of tunnels found throughout the 10 seed runs are relatively
around the same across all strategies, and the runtime of all three are also
around the same. Since we gave all three strategies the same threshold they must
finish by, this indicates that the biasing strategies are actually more efficient in
finding these specified tunnels. The tunnels that the bias strategies found were
more meaningful in the sense that the tunnels was higher ranked in the given
bias metric. This indicates that our biasing strategies are able to find more
meaningful tunnels in less time.

5 Conclusions

We introduced using metrics such as clearance and energy to improve the explo-
ration process of motion planning problems. Our main contribution is the use of
workspace properties available to skeleton-guided planners to improve the plan-
ning process. The Bias-guided method is dependent on the workspace skeleton,
and it performs best on Motion Planning problems which have strong relations
to its workspace topology.

The Bias-guided method allows us to find the most desirable paths faster
and to target exploration to narrow passages using clearance value in robotics
and energy value in protein environments. The experiments above demonstrate
how our method works in both environments while also highlighting its features
and bottlenecks.



In theory, more workspace related metrics can be designed for any motion
planning problem that would benefit from exploiting such metric during plan-
ning.

5.1 Future Work

We plan to extend the clearance metric to other motion planning applications
like animation and Image-guided Medical Needle Steering. We also plan to test
the clearance-bias method in real-world navigation experiments.

In regards to the protein environments, we are working on tuning our bias-
ing strategy to be able to rank the protein tunnels on how easily they can be
discovered as the planner keeps exploring.
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