

Problem Statement

- Protein shape and functionality changes when as ligands
- Ligands bind to a specific region of the protein known as the binding site
- accessibility of the tunnels to the binding site

Objective

- Evaluate and gain more insight on meaningful

- Motion planning can simplify a complex

Shawna Thomas

Texas A&M University sthomas@cse.tamu.edu

Nancy M. Amato

University of Illinois Urbana-Champaign namato@Illinois.edu

Experiments

Set-Up

- Comparison between biasing with energy and nonbiasing (topological analysis)
- Protein environment is the same in all runs (fbw)
- 10 seeds were randomly generated, and the metrics (e.g. runtime, nodes, etc.) were averaged for both planning strategies

a) Selecting region with topology

	Runtime	Nodes	Edges	Tunnels found
Selecting with Topology	169	644	2765	12
Selecting with Energy	123	497	2761	12

Discussion

- Energy biasing strategy on average created smaller roadmaps with more connectivity
- It was able to find the same number of tunnels in similar time

Conclusion

- By biasing our motion planning strategy with energy, energetically favorable regions will be explored first
- Creates a more accurate and informed model of the accessibility tunnels, with less extraneous testing
- In the future, the biasing strategy can include a combination of biometrics for more accuracy

Acknowledgements

I would like to give my thanks to CRA-W DREU and REU program, UIUC and Parasol Labs. I would also like to thank my mentors, Dr. Nancy M. Amato and Diane Uwacu, as well as everyone working under Parasol Labs.

b) Selecting region with energy (my implementation)