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Abstract. The study of protein-ligand binding is an important area of
research in drug design. When a ligand, a small drug molecule, binds to
a protein at an active binding site, the protein will undergo structural
changes to make it more difficult for the ligand to escape. In this pa-
per, we use motion planning to model protein-ligand binding in order
to study the changes in accessibility that occur in the protein structure
after binding with a ligand. We experimented on two pairs of proteins
and developed an initial idea for a method to score accessibility of ac-
cess tunnels and proteins. Overall, we found that protein accessibility
decreased from the unbound state to the bound state. Accessibility was
affected negatively by fewer valid access tunnels and higher energy levels
in the bound protein state compared to those in the unbound state.

1 Introduction

The study of protein-ligand interaction is important to research on drug molecules.
A ligand, which can be considered a small drug molecule, interacts with a pro-
tein at a binding site. When bound to a protein, the ligand can trigger or inhibit
a reaction, making it important that the ligand only interacts with the right
protein. This is a concern in the study of drug design, as many drugs cause
side effects by interacting with the wrong protein. By studying protein-ligand
binding, we hope to be able to better understand how the ligand binds to the
protein and what factors will influence a ligand to have higher affinity with one
protein over another.

While binding sites can occur at the surface of the protein, we focus on
proteins with buried binding sites. These are found deep within the protein,
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Fig. 1: Protein-Ligand Binding

and the ligand will need to pass through access tunnels in order to reach the
binding site, as shown in Figure 1. While much research has been done on the
active binding site, research on the tunnel pathways to the binding site is still
relatively new. We know that protein structures will change after protein-ligand
binding, often to prevent the ligand from escaping easily once it has bound to the
protein. We hypothesize that the accessibility of the active binding site decreases
in the ligand-bound protein, potentially through factors like fewer valid pathways
to travel through or higher energy levels that inhibit ligand mobility. Because of
this, we focused on the study of protein tunnels to gather more data.

One way to study these tunnels is through the application of motion planning
to computational biology. Motion planning has been used in this area of research
to model how a drug molecule might interact with a protein to access its binding
site. This is done by using the protein structure as a complex 3D environment
and the drug molecule, or ligand, as the robot. For this purpose, this project uses
motion planning to model the access pathways in a given protein and study the
changes that occurred from the unbound protein to the ligand-bound protein.
We will refer to these two states as the unbound and bound state respectively.

In this work, we will use existing sampling-based motion planning based
approaches to model protein tunnels for a given protein and analyze our results
with a method that will score the accessibility of the tunnels found and the
protein itself. We implemented an initial idea for an accessibility scoring function
that takes into account the number of valid pathways found inside a protein and
the energy levels along each pathway.

2 Related Work

In this section, we will explain the biological concepts motivating this paper and
the motion planning features that we utilized in our code.

2.1 Protein-Ligand Binding

Recently, more research is being done based on the Keyhole-Lock-Key Model,
which takes into account how the structure of protein tunnels or ”keyholes” can



affect protein-ligand binding activity. The protein structure can change depend-
ing on whether it is bound to a ligand or not. In bound proteins, formerly valid
pathways may close up to prevent the ligand from the binding site, but also to
prevent other ligands from entering as well.

Previous research focused heavily on the active binding site without consid-
eration for how the tunnels to the binding site might also affect the ligand’s
ability to reach the binding site. Tunnel geometry [5] can contribute to ligand
binding not only by restricting the size and shapes of the ligands that are allowed
through to the binding site, but also by shaping the interactions and barriers
within tunnels that may influence how a ligand is able to reach the binding site.

2.2 Guided Planning

Due to the complexity of protein structures, it can be difficult for sampling-based
motion planning algorithms to navigate the free space of the environment and
find valid paths through the many narrow passages within the protein structure.
Dynamic Region-Biased Rapidly-Exploring Random Tree (DRRRT) [3] works
well in this environment because it uses a skeleton that represents the topology
of the free space of a protein to guide itself through the narrow areas of the
inside of the protein. The algorithm chooses regions guided by the skeleton and
samples nodes with the given region. Once enough valid configurations are gen-
erated, the algorithm is then able to continue sampling a new region along the
skeleton, allowing the roadmap to have a more representative sample of valid
robot configurations within the environment.

To further increase optimization in finding paths through the protein, we
can allow connectivity using Rapidly-Exploring Random Graphs (DRRRG) [4].
This method generalizes the tree generated in DRRRT into a graph structure
and creates a more comprehensive sample of valid node configurations of the
environment. Connectivity is increased in a graph structure and results in the
finding of more optimal paths than the construction of a tree.

3 Overall Approach

In this section, we will describe the methods that we used to model accessible
ligand pathways in protein and to gather data on the protein tunnels.

3.1 Modeling

We generated geometric models of the protein and ligand for our experiment. We
use the protein structure for our experiment environment and treat the ligand
structure as the body of our movable robot. Although proteins are dynamic
structures that will change as a ligand moves through it, these are minor changes
in structure that are negligible. Therefore, for the purposes of our experiment,
we utilize rigid protein structures in the environment.

Figure 6 shows an example of the protein and ligand models that were used
in our experiments.



(a) 4FWB

(b) TCP

Fig. 3: Geometric models of protein (a) and a ligand (b)

3.2 Planning

In the planning stage, as shown in Figure 4, we first generated a Mean Curvature
Skeleton (MCS) [8] of the protein structure to represent the free space of the
protein. We used the generated skeleton to guide the motion planning sampler
to build the planning roadmap.

Fig. 4: Planning Phase

Our motion planning method is based off the sampling-based methods defined
in Section 2.2. We use a Mean Curvature skeleton guided RRG [4] to sample
valid configurations of the ligand robot within the protein environments. This
is used to construct a roadmap of the valid robot configurations, which is used
in the path finding process. By generating start and goal nodes, we can query
through the roadmap to generate possible paths that the ligand robot can take
from the surface of the protein to the active binding site. Once any region has
been explored thoroughly, we end the planning method to obtain the valid paths
generated by each seed.



3.3 Analysis

Once all the pathways are generated, we analyze them further to determine which
seeds in the experiment discovered the same tunnels. We check how similar the
discovered tunnels are to each other and cluster the ones that pass a certain
similarity threshold in order to retain distinct pathways.

(a) Paths Found by all Seeds
(b) Distinct Tunnels after Path
Similarity Comparison

Fig. 6: After performing analysis on paths found by the motion planning algorithm, we
are able to distinguish which pathways can be clustered together and treated as the
same pathway.

Finally, we implemented a scoring function to score the accessibility of tunnels
and proteins.

The tunnel score takes into consideration the volume and energy feasibility
within each tunnel. This is demonstrated by metrics like the number of seeds
that discovered a particular tunnel and the energy levels within the tunnel. The
following is the format for the tunnel score:

Num. Seeds · w0 + Min Energy · w1 − Max Energy · w2 (1)

The more seeds that discover a tunnel, the greater positive factor it has on the
tunnel scoring method. This is an indicator of tunnel volume and represents how
likely the pathway was found by the motion planning method by the number
of seeds that discovered the tunnel. A tunnel can be seen as easier to plan
through when more seeds discover valid paths through it. Energy levels also
play an important role in accessibility. Lower energy levels help a ligand traverse
through a protein tunnel, whereas high energy levels can act as a barrier that
inhibits a ligand’s ability to pass through a tunnel. For these reasons, smaller
minimum energies of a tunnel have a positive influence on the accessibility score,
whereas high energy levels detract from the score, especially if they near the
maximum energy threshold. The scoring function takes the average minimum
and maximum energies found across seeds for a particular tunnel.



Similar to the tunnel scoring function, the protein score is formatted as fol-
lows:

Num. Tunnels ·w0 +Avg. Tunnel Score ·w1 +Min Energy ·w2−Max Energy ·w3

(2)
In addition to energy levels, the protein score also considers the total number

of distinct tunnels that were found for the protein. If the number of tunnels
discovered pass the expected tunnel count threshold, the weight of the number
of tunnels found is maximized. The method also considers the average tunnel
score of the protein. This provides a general idea of how accessible the protein
tunnels within the protein might be.

Using these two functions, we assess the accessibility of the tunnels and
proteins and produce a score on a scale from zero to one in order to provide a
statistic to judge protein pathway accessibility.

4 Experiments

4.1 Experimental Setup

We used PDB files from the RCSB Protein Data Bank [2] to model protein
structures for our experiment. We also used the software UCSF Chimera [7] to
generate geometric models of the protein and the ligand. Using these structures,
we built our experiment environment, using the protein structure as a 3D ob-
stacle in the configuration space and the ligand as the movable robot within the
environment.

When running the experiment, we tested with six seeds and took the aver-
age of the data generated by all the seeds. We gathered information about the
roadmap construction run time, which provides information about the difficulty
of planning the roadmap. We also gathered data on the number of tunnels that
were found as well as the minimum and maximum energy levels in each tunnel
and averaged those values respectively to use in our scoring function.

Parameters that we took into consideration included setting the threshold
for energy at 1000 in order to ignore found tunnels whose energy levels were
very high. We also have a threshold for the number of expected pathways per
protein. We gathered this from literature and research done about each protein
that identified access tunnels with the protein and indicated how many were
found. We used this to influence the scoring function so that the weight of the
tunnel volume wouldn’t be overcompensating when the found number of protein
pathways from our experiments exceeded the number of tunnels that we expected
to find. This kept the tunnel volume weight within a fixed interval for the scoring
function.

In order to study the cost and quality of the roadmap by the motion planning
algorithm, we extracted information about the run time of constructing the
roadmap. We also looked at the number of tunnels that were found by the
motion planning algorithm. From this, we also gathered data about the energy



levels in the protein tunnels. Using these metrics we applied the scoring function
to produce an accessibility score for the tunnels and proteins.

We gathered statistics about the quality and cost of roadmap construction
for each protein and scored the tunnels that were found to produce an overall
protein score. The tunnels and proteins were scored based on accessibility. We
took into consideration the number of tunnels that were found as well as the
minimum and maximum energy levels measured within the protein as explained
in equation 2.

4.2 Results

In Figure 7, the run time for constructing the roadmap increased for HCV NS5B.
This indicates that the motion planning algorithm expended more time trying to
find valid robot configurations in the free space of the environment, suggesting
that the bound state of the protein was a more difficult environment to build
a roadmap in. DhaA31 did not follow this trend, as the run time decreased,
suggesting that the bound protein was an easier environment to plan through.

Figure 8 displays the difference in the number of tunnels found between
the unbound and bound state of the protein. We can see that the number of
tunnels decreases for HCV NS5B, which again contributes to the accessibility
score because there are fewer pathways being generated for a ligand to traverse
through. This makes it more difficult for a ligand to access a binding site because
the ligand now has to search harder in order to find a valid pathway in the bound
state. Meanwhile, the number of tunnels for DhaA31 stayed the same.
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Fig. 7: Avg. Run Time
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Fig. 8: Num. of Tunnels

Protein
Score

Unbound Bound

DhaA31 0.50 0.48

HCV NS5B 0.54 0.26

Table 1: Protein Accessibility Score



Using the above statistics, we applied them to the scoring function to get a
final protein score for each protein. As shown in Table 1, the protein accessibility
score decreased from the unbound protein state to the bound state for both sets
of proteins. This indicates that it was more difficult for the ligand to access
the active binding site within the protein when it was in the bound state. This
is obvious for HCV NS5B, as the protein underwent structural changes that
indicated decreased accessibility to the active binding site. However, for DhaA31,
there were no obvious structural changes from the data we gather that suggest
the bound protein had lower accessibility. The decrease in score instead comes
from the differences in energy levels that we gathered from our data, as the energy
levels within the bound protein of DhaA31 were higher in general, making it less
conducive for the ligand to move through the protein.

5 Conclusion

Overall, we observed that pathway accessibility decreased from the unbound
state to the bound state. From our data, we can infer that this is affected both
by fewer accessible pathways for the ligand to find the binding site, and higher
energy levels that inhibit a ligand’s ability to progress from a particular pathway.
This provides us with some insight into how protein structures change when
interacting with a ligand and will help guide our future work. We plan to expand
the current data set with more unbound/bound protein pairs. We will also work
on implementing a more sophisticated scoring system and improve upon the
current scoring method. In order to compare our results against existing methods
of protein accessibility, we intend to use programs like DINC [1] and Probis [6].
These programs analyze the binding site in order to evaluate protein accessibility,
and we hope to show that even when the binding site does not change much
between the unbound and bound protein, our method is able to detect and score
the changes in accessibility due to our consideration of access tunnels in the
protein.
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