
Virtual World Context Encoding for Grounded Dialogue in Minecraft

Charlotte Lambert1, Ariel Cordes2, Elli Kaplan3, Prashant Jayannavar4, and Julia Hockenmaier4

1Vassar College
2University of Minnesota Morris
3North Carolina State University

4University of Illinois Urbana-Champaign
clambert@vassar.edu

Abstract

Our research aims to develop agents that
can communicate with each other using
natural language (e.g. to give and execute
instructions) in a 3D environment. We
use Minecraft, a game in which players
can explore a 3D environment and build
structures out of blocks. In the Minecraft
Collaborative Building Task, an Architect
(A) has to instruct a Builder (B) via chat
to build a copy of a Target structure given
to A. Throughout the game, A and B
communicate back and forth via chat, but
while A can observe B, only B can place
blocks.

We designed and implemented a con-
volutional neural network (CNN) to
recognize shapes in Minecraft’s virtual 3D
environment. We have begun to use the
output of this CNN as input to models that
generate utterances for the Architect or
Builder agents, and will be incorporating
it into models that predict the Builder’s
next block placement actions.

1 Introduction

The concept of a blocks world opens up the pos-
sibility of creating agents that effectively com-
municate about those blocks in a given environ-
ment. Accomplishing this task requires an abil-
ity to use relevant language and an understand-
ing of the structures in the world. In this pa-
per, we build upon work done by Narayan-Chen
et al. (2019) on the Minecraft Collaborative Build-
ing task and use data from the Minecraft Dia-
logue Corpus (Narayan-Chen et al., 2019). We de-
velop a convolutional neural network to provide
the Architect and Builder agents with more con-

text about the shapes present in the 3D environ-
ment (Section 3). Additionally, we work with the
sub-task of Builder utterance generation and cre-
ate the first two iterations of a Builder model (Sec-
tions 4 and 5). We continue to work with the best
Architect agent developed by Narayan-Chen et al.
(2019) and encode a new representation of the tar-
get structure and the current build structure (Sec-
tion 6). In Section 7 we describe our experimental
setup and analyze the results in Section 8.

2 Related Work

Our work is similar to that of Wang et al. (2017)
in that it involves building structures in a three-
dimensional blocks world, however, their work is
more focused on the use of a programming lan-
guage. Additionally, Wang et al. (2017) use hu-
man participants to dynamically teach their sys-
tem more language. This differs from our work
because we are developing fully interactive agents,
and thus won’t have our system communicate with
human participants. The work of Bisk et al.
(2016a,b, 2018) is more closely related to ours
since it has a similar need for a system with some
complex understanding of certain structures. Bisk
et al. (2016a,b, 2018) use the example of a tower,
a shape we frequently see in our target structures,
to demonstrate concepts their system needs to un-
derstand. In both their and our work, we hope to
develop systems with an understanding of these
simplistic shapes in a blocks world environment.
However, our work requires two agents (or two
humans) to communicate unlike the work of Bisk
et al. (2016a,b, 2018). In addition, our use of
Minecraft as the environment for our blocks world
gives us more freedom to build more varying types
of structures, to manipulate the viewing angle, and
to identify sub-shapes of structures based on color.
The distinct colors are particularly important see-



ing as they motivate much of the progress reflected
in this paper.

3 Shape Recognition Task

To give both the Architect and Builder agents more
context during the game, we develop a convolu-
tional neural net (CNN) to recognize shapes in
3D space. The CNN is designed to recognize
the shapes most frequently found in target struc-
tures and referenced by Architects in their instruc-
tions. There are seven shapes the CNN can recog-
nize: rows, diagonal lines, T-shapes, U-shapes, L-
shapes, rectangles, and rectangular prisms. Each
of these shapes has various different orientations
within 3D space. Summing up all the unique ori-
entations of each shape yields 18 different possible
structures to be recognized. These structures are
represented in a synthetic coordinate system with
the same dimensions as the 3D space used in the
Minecraft Collaborative Building Task developed
by Narayan-Chen et al. (2019).

The Architecture of the CNN consists of two
convolutional layers and three linear layers. The
CNN uses ReLU as a nonlinearity. There are six
input channels (one for each color channel of the
world state) and 18 outputs (one for each type of
shape). This is a multilabel task, so the output
will reflect every shape recognized within the in-
put world state. The CNN will recognize each
shape in world states containing multiple indepen-
dent structures and all sub-shapes of a given shape
(e.g., rows are sub-shapes of rectangles).

4 Seq2Seq Builder Utterance Model

We develop two basic models for Builder Utter-
ance generation. First, we utilize the existing
sequence-to-sequence model used for the Archi-
tect previously (Narayan-Chen et al., 2019). Sim-
ilarly, this model relies the dialogue history to de-
termine what utterance should be generated next.

This dialogue history is encoded as a sequence
of tokens. Builder utterances are written between
start token < B > and end token < /B >. All
tokens between the start and end tokens comprise
an utterance, or one complete message sent from
the Builder to the Architect (Narayan-Chen et al.,
2019). Just as with the existing Architect model,
the tokens go through a word embedding layer and
a bidirectional RNN (Schuster and Paliwal, 1997).

5 Utterances and Shape Builder
Utterance Model

Since the Builder, unlike the Architect, does not
have access to the target structure, we do not aug-
ment our model with a comparison of the two
structures. Instead, for our second Builder model,
we augment the seq2seq model with the output of
our shape recognition CNN evaluated on the built
structure to provide the Builder with more context.
The encoder continues to utilize the dialogue his-
tory along with the output of the CNN to predict
the next Builder utterance to be generated.

6 Seq2Seq Architect Utterance Model

We also augment the basic seq2seq Architect ut-
terance model with the output of our shape recog-
nition CNN. We evaluate both the target structure
and the built structure using the CNN and compute
the explicit difference between them (target minus
built). This difference reflects any shapes present
in the target structure but not the built structure,
thus indicating which shapes are left to be built.
All three of these values are used alongside the di-
alogue history to improve the Architect utterance
generation by providing as much context as possi-
ble.

6.1 Block Counters

Along with the addition of the output from the
CNN, we augment the Architect’s seq2seq model
with global block counters, as was done in models
developed by Narayan-Chen et al. (2019). This
gives the Architect more information about ex-
pected overall placements, next placements, and
removals for all six color channels over the entire
build region.

7 Experimental Setup

7.1 Shape Recognition CNN

Data We synthetically generated 104,600 ran-
dom 3D configurations composed of at least one
of 7 possible shapes. The training, test, and
validation sets contain 66,666, 4,600, and 33,334
representations of 3D world states respectively.
Half of each data set is composed of simple
shapes (i.e., one shape in the world) and the
remaining data is composed of composite shapes
(i.e., between two and four shapes in one world).

Training We trained for a maximum of



Shape
Metric Row Plane Rectangular Prism Diagonal Line L-shape U-shape T-shape

Precision 100 100 100 99 100 98 99
Recall 100 100 100 98 100 99 100

Table 1: Precision and accuracy of shape recognizing CNN per shape

150 epochs using the SGD optimizer. We ended
training early when validation loss increased for
6 epochs. The loss was calculated using Multi-
LabelSoftMarginLoss. We varied the number of
channels in the CNN’s two convolutional layers
and the size of the remaining linear layers until
we reached the model that performed best. At
that point we varied the sizes of the training, val-
idation, and test sets (since our data is generated
synthetically) to improve accuracy.

7.2 Builder Utterance Model

Data We used the utterance data from the
Minecraft Dialogue corpus (Narayan-Chen et al.,
2019). The training, test, and validation data
contain 2,394, 986, and 870 Builder utterances
respectively.

Training We followed the same setup used
in previous Architect experiments (Narayan-Chen
et al., 2019) and trained for a maximum of 40
epochs using the Adam optimizer (Kingma and
Ba, 2015). As before, we ran a grid search over
model Architecture hyperparameters adapted for
the Builder and included new hyperparameters
related to the addition of the shape recognizing
CNN.

7.3 Architect Utterance Model

Data Again, we used utterance data from the
Minecraft Dialogue corpus (Narayan-Chen et al.,
2019). The training, test, and validation data con-
tain 6,548, 2,855, and 2,251 Architect utterances
respectively.

Training The training for the Architect ut-
terance model followed the same structure as
that of the Builder, however we performed more
in-depth grid searches. We started off by using
the hyperparameters from the best performing
Architect model developed by Narayan-Chen
et al. (2019) along with additional hyperparam-
eters needed for our CNN. Once we found the
best model, we fine-tuned by varying dropout

parameters (Srivastava et al., 2014).

8 Results and Analysis

8.1 Shape Recognition
Table 1 shows the results of running our shape rec-
ognizing CNN over our validation set using the
best set of parameters. While rows, planes, and
rectangular prisms performed very well for most
variations of parameters, this iteration proved to
yield the best results for the most complicated
shapes, namely diagonals and U-shapes.

8.2 Builder Dialogue Act Annotation
Similar to the Architect dialogue acts defined
by Narayan-Chen et al. (2019), we evaluated all
Builder utterances and define eight dialogue acts
to categorize the types of utterances. Each utter-
ance falls into exactly one category. These cate-
gories are defined as follows:

• Greeting: the utterance includes a welcome
message or recognition of the start of the mis-
sion and occurs early in the game (“Hello.
What are we building this time?”) (5.95% of
all utterances)

• Verification Questions: the utterance includes
a question to the Architect requesting that
they confirm that the previous action(s) were
correct (“like this?”) (23% of all utterances)

• Clarification Questions: the utterance re-
quests that the Architect clarifies a given in-
struction or statement (“can I put them any-
where?”) (26.36% of all utterances)

• Suggestions: the utterance conveys some-
thing the Architect can do to make commu-
nication more effective (“can you give me an
instruction for a single purple block first?”)
(1.95% of all utterances)

• Extrapolation: the utterance shows the
Builder making an educated guess as to how
the build structure should be built and takes
the initiative to carry out the assumption (“I



BLEU
Metric B-1 B-2 B-3 B-4
seq2seq 0.193 0.11 0.081 0.045
+shapes 0.183 0.098 0.078 0

Table 2: Relevant BLEU scores for Builder utterance models over the validation set

BLEU
Metric B-1 B-2 B-3 B-4 colors spatial dialogue

seq2seq 0.17 0.084 0.045 0.023 0.17 0.105 0.161
+ global & local

seq2seq 0.149 0.069 0.038 0.021 0.071 0.084 0.182
+shapes 0.151 0.074 0.042 0.025 0.107 0.093 0.144

+diff 0.157 0.077 0.043 0.025 0.12 0.09 0.175
+global 0.174 0.085 0.045 0.028 0.196 0.1 0.163

Table 3: Relevant BLEU scores for Architect utterance models over the validation set

think I know what you want. Let me try”)
(0.3% of all utterances)

• Display Understanding: the utterance ex-
presses understanding of a given instruction
(“oh I see”) (27.1% of all utterances)

• Materials Update: the utterance states some-
thing about the current quantity of build ma-
terials or responds to an Architect’s inquiry
about quantity of materials (“I am out of
blocks”) (0.78% of all utterances)

• Other/Chit-Chat: any other statement not rel-
evant to the completion of the task, including
friendly chit-chat (“look at this beautiful Ar-
chitecture”) (14.53% of all utterances)

8.3 Builder Utterance Generation
In table 2, we report the results of running our
two different versions of the Builder utterance
model. These results are measured with standard
BLEU scores (Papineni et al., 2002). We dis-
covered that adding the additional context to the
Builder model did not improve accuracy. How-
ever, the Builder still performed better than the
best Architect model (see table 3). This can be
likely attributed to the simplicity of Builder utter-
ances. This is demonstrated by the fact that the
best Builder model, for example, generated 540 in-
stances of the utterance “like that?” out of 870 to-
tal utterances, yet it resulted in high BLEU scores.

8.4 Architect Utterance Generation
Table 3 shows the results from the best Architect
model and the basic seq2seq model, both devel-

oped by Narayan-Chen et al. (2019), along with
the variations to the seq2seq model that we de-
veloped. On the first line, we show the best re-
sults previously developed. Next we report the re-
sults from the most basic seq2seq Architect model
followed by all additions we made. With each
augmentation to the seq2seq model, the BLEU-
1 score increased. In particular, the addition of
the global block counters drastically improved the
accuracy. Similar to the previous experiments
run by Narayan-Chen et al. (2019), the augmenta-
tions had large impacts on the color-BLEU score.
For example, the model demonstrates some un-
derstanding of color when generating the utter-
ance “now a row of three orange blocks on top
of that” when instructing the Builder to build the
structure pictured in Figure 1. Our best Architect
model surpassed the BLEU scores of the previ-
ously best model. However, the issue of repeated
words within generated Architect utterances cited

Figure 1: Example target structure



in Narayan-Chen et al. (2019) persists.

9 Conclusions and Future Work

We have expanded on the previous first steps made
towards developing a fully interactive Architect
agent for the Minecraft Collaborative Building
Task. The work has built upon the existing Archi-
tect agents as well as introducing a simple Builder
agent. With this progress, we move a step closer
to creating two fully interactive agents, however
many steps remain to be taken. Primarily, the
Builder agent must be able to determine when to
make a block placement or removal. Addition-
ally, the Builder needs knowledge of what partic-
ular action needs to be taken based on dialogue
history and the current state of the build region.
Along with this new behavior, there is much room
to improve Builder utterance generation. Despite
obtaining the highest BLEU scores as of yet, more
work should be done to fine-tune the best Builder
utterance generation model to get the best perfor-
mance possible. Finally, we will work towards us-
ing Builder dialogue acts to improve accuracy of
Builder utterance generation in addition to creat-
ing a new metric to measure that accuracy.

Acknowledgments

We would like to thank the NSF and the DREU
program through the CRA-W for this opportunity.
Additionally, we would like to express gratitude
to our mentors, Julia Hockenmaier and Prashant
Jayannavar for their support.

References
Yonatan Bisk, Daniel Marcu, and William Wong.

2016a. Towards a dataset for human computer com-
munication via grounded language acquisition.

Yonatan Bisk, Kevin Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning interpretable spatial oper-
ations in a rich 3d blocks world.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016b.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761, San Diego, California. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Conference
of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Sida I. Wang, Samuel Ginn, Percy Liang, and Christo-
pher D. Manning. 2017. Naturalizing a program-
ming language via interactive learning. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 929–938, Vancouver, Canada. Associa-
tion for Computational Linguistics.

https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://doi.org/10.18653/v1/N16-1089
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P19-1537
https://www.aclweb.org/anthology/P19-1537
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://ieeexplore.ieee.org/document/650093
https://ieeexplore.ieee.org/document/650093
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086

