
PREDICTING NEURAL NETWORK

GENERALIZATION
Aaron Christson

Berea College

University of Illinois at Urbana-Champaign

Berea, Kentucky

christsona@berea.edu

Abstract—The purpose of this paper is to attempt to

predict the generalization of a neural network toward

unseen information. To do this we generated models that

were valid for the cifar10 dataset and tried to predict the

test error of the model using the model architecture,

optimizer, initial and end weights, and training error.

With the models we generated we represented them as

feature vectors with one-hot and hyperparameter

information. The feature vectors were then used in an

ensemble neural network of 4 LSTM’s each processing a

piece of the collected information.

I. INTRODUCTION
 The current process of building and using neural networks

is to have a dataset split into train and test sets. The neural

network is then trained with the training set and evaluated

with the test set. The model is deemed good if it has a good

generalization to unseen data; meaning that the difference

between the training error and the testing error is low. If we

are able to predict how a model will generalize towards

unseen data, then we will be able to effectively remove testing

and model evaluation from the machine learning process. This

will help speed up the development process for machine

learning projects. The purpose of this research was to attempt

to predict the test error, and in turn the generalization error, of

a neural network given it’s network architecture, optimizer,

beginning and ending weights, and training error. To do this

we will be looking at models trained on the cifar10 dataset.

II. METHODS
A. Generating Random Models

In order to predict the generalization of a neural

network, we first needed to get a dataset of neural networks

that were trained on cifar10 data. In order to get models that

cover a large range of architecture and optimization pairings

we decided to randomly generate these models. To do this we

randomly sampled models uniformly across our sample space

of layer types, optimizers, and activations. The number of

model components was decided by a randomly chosen number

from 3 to 10. The smallest model we could generate would

have 3 layers and the largest would have 10 layers. Our layer

types consisted of convolution, fully connected, max pooling,

batch normalization, and dropout layers. Our optimizer types

consisted of stochastic gradient descent, Adam, Adadelta, and

Adagrad. We used relu, selu, and leaky relu for our activation

types.
We decided not to make our loss function random

and to just use cross entropy loss because it works best for

classification data. We also chose activations for only the

layer types that worked with activations, like the convolution

layers and fully connected layers. These constraints were put

in place in an attempt to reduce the number of errors produced

by the models.
Once we had the layer types, we used the

nn.Sequential function in the PyTorch deep learning

framework to put the model together. Then we tested the

model on the cifar10 dataset. If we could run the model on the

cifar10 dataset with 0 training error, then the model was saved

to be used in our model dataset. We did this until we had

about 1000 data points in our dataset.

B. Processing Dataset

To predict test error, we made an RNN or more

specifically 4 connected LSTM’s; each to process a piece of

the information we collected (model architecture, optimizer,

initial and end weight, and train error). We decided to

calculate some basic statistics like the sum, maximum,

minimum, mean, and standard deviation on the initial and

ending weights to get a smaller, but representative input for

our weight LSTM. When we saved the model architectures

and optimizers, we saved them as strings because it was

easiest to do. However in order to get the model architecture

in a format that would make sense to the RNN we decided to

represent this information using one-hot vectors. This allowed

us to have a 1 if a specific layer type was used in a layer and a

0 if a layer type was not used. We also did this for the

optimization information. We did not do this for the weights

and train error since they were already numbers.
 The hyperparameters of a neural network often do a lot to

help the performance of the network. Because of this, we

decided to include the hyperparameters in each layer and

optimizer along with its one-hot vector to make a sort of

feature vector that completely represented the architecture and

optimizer of the model. Since we saved the architecture and

optimizer as strings it was easiest to just go through the string

mailto:christsona@berea.edu
mailto:christsona@berea.edu

looking for the hyperparameter keywords in order to extract

each value.

C. RNN Structure and Methods

The structure of the RNN consisted of and ensemble

of four LSTM’s that were connected together by the hidden

state output each model produced. We used LSTMs instead of

the basic RNN so our model could better remember the

information it had seen earlier. Initial hidden state was a tensor

of randomly generated numbers from 0 to 1 and was used as

an input to the architecture LSTM since no LSTM came

before it. The hidden state produced by the architecture LSTM

was then used as an input to the optimizer LSTM along with

the optimizer information and the same was done with the

remaining LSTM’s. The output of the final LSTM was then

put through a fully connected layer and we put output through

a sigmoid function in order to scale it to a number between 0

and 1 like the test error we were comparing it with. We trained

the model for 600 epochs and evaluated its predictions using

the epsilon losses between the predicted output and the actual

test error.

III Results
Model generation code produced models that

performed in a way that was very similar to the figure on the

left. The benchmarked model we tried had a performance like

the figure on the right. The train error is the blue plot and the

test error is the red plot.

In all the models we made through random generation, we got

train and test errors that were over .90 or 90\% as shown in the

following histograms.

An interesting thing that we found, however, is that the

generalization errors from our randomly generated models

were very low.

IV Discussion
From our work we saw that it was easy to produce models

with high train and test errors, but low generalization error.

Since we are trying to predict the generalization error, we

generate many models like these and train our meta learner on

them. Then we can see if it learns to predict generalization by

evaluating it with models that have zero train error. This way

we can tell what models would have good test performance.

When we looked at the models, we also saw that because the

models were randomly generated, they were very strange. We

were getting models with dropout layers as the final layer a

learning rates that were either too low or too high. This results

in weird graphs like the one shown below.

V Further Work
Based on what we have accomplished so far, some

further work that could be done is to extend the sample space

from which we were generating random models. This could be

done by adding more layer blocks, activations, and optimizers.

We could also enhance our current random model generator to

always generate valid model with zero training error. Another

way we could extend this work is to generate variation of the

benchmarked models that had a good performance on the

cifar10 dataset to produce more models.

VI Conclusion
We were able to make the random model generator,

but we were not able to get it to produce models that had zero

train error. Due to the time it took to build the model generator

and the time it is taking to generate a big enough dataset of

models to train with, we have not yet been able to train our

meta learner to predict generalization.

VII Acknowledgements
I would like to thank the CRA-W DREU program and Dr.

Koyejo for giving me the opportunity to participate in this

research. I would also like to thank Brando Miranda for his

research guidance and Chase Duncan for his mentorship

during this experience.

