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Abstract— Much research has gone towards autonomous
driving during the past few years. However as we continually
increase our focus on the vehicle, we need to remember why
were doing this in the first place: the people inside the car.
Seeing as that a world with everybody being driven by a
fully autonomous car is most likely very, very far into the
future, we are focusing on semi-autonomous vehicles and how
they can help make changes to the environment based on
the human perception of vision and sound. Although the
autonomous vehicle research community has been focusing
primarily with computer vision, we decided to combine this
with psychoacoustics - specifically annoyance and how it affects
the drivers focus. The sound in vehicles is not only informative
of the state of the vehicle and the environment, but it can also
affect a drivers attention, performance, and pleasantness of
driving. To our understanding, this might be the first dataset
that combines and focuses on not only the visual aspect of
driving, but also on the essential auditory component that comes
with this experience. Our goal is to create an intelligent agent
that acts to improve the drivers pleasantness through acoustic-
driven learning. The Berkeley Audio-Visual Dataset is a novel
inner and outer vehicle image and sound dataset containing
over 3 hours of driving footage, of which over 100K images
inside the vehicle have been annotated. Alongside this data, we
have gathered a diverse collection of data including 3D point
clouds, vehicle’s inertial measurements, and vehicle information
such as wheel speeds, gear used, among other information in a
drive.

Index Terms— psychoacoustic metrics, acoustic-driven, deep
reinforcement learning, safety, pleasantness, annoyance

I. INTRODUCTION

First and foremost, the main system that that is required
for driving is safety. Without a safety system to predict
and respond to various different environment states and
mixed behaviors of human agents, it is unlikely that any
person would want to get into the vehicle. The research
community has been continuously working towards this goal
since the 1920’s [1] with relatively great success in modern
day autonomous vehicles. While we must take the safety
of the vehicle into account, it is also important to consider
the overall driving experience in regards to comfort and
pleasantness. As the research community works towards the
creation of an autonomous vehicle, it is imperative to note
that this intelligent system needs to improve the overall in-
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car experience for the driver. There is no point in creating
such a vehicle if nobody would want to use it.

One such factor of improving the in-car experience for
a driver is the vehicle’s interior sound. This aspect will
provide the state of the overall environment and can affect the
physiological behavior of drivers. Not only will this help us
understand the vehicle’s state and environment, but this can
affect a driver’s performance, attention, and comfort while
driving.

Sounds can create various different effects on a human.
Just as it can create a pleasant environment and driving
experience, it can also help create a stressful situation for the
drive which can ultimately increase the probability of traffic
accidents due to the physiological and psychological effects
of sounds on humans. A study by Fagerlönn [2] investigated
the influence of urgent alarms on truck drivers. In this study,
they found that drivers would brake significantly harder
with a high-urgency warning as compared to a low-urgency
warning. Ho and Spance [3] found that a simple auditory
signal such as a 2 kHz tone is itself capable of distracting
a driver. While these studies were done specifically for
driving, Sammler et al. [4] presented a study inspecting the
electroencephalogram (EEG) power and heart rate change
with pleasant and unpleasant states induced by consonant and
dissonant music. In music theory the quality of consonance
is described as pleasant and agreeable, whereas dissonance
is seen to be harsh. It is described to cause tension and
desire to be resolved to a consonant interval. This is not
an exhaustive list for the neural bases of emotion and mood,
and the psychology of pleasantness. If interested we refer
the reader to the works of Ruckmick [5] and Dalgleish [6].

Over the past two decades we have seen an increasing
body of research of the sound quality of vehicle interior
noise. Thus, the consumer has become highly sensitive to
a variety of vehicle sounds such as engine sound, warning
chimes, door sounds, radio, etc. As of now, the vehicle’s
sound characteristics is one of the most relevant factors
affecting customer vehicle preferences [7]. Past works in
vehicle sound quality include various facts, such as quietness
and sound pleasantness, but these works have been mainly
focused on certain requirements for the design and produc-
tion of new vehicles. Research also shows that there is a
complex tradeoff between removing disturbing sounds and
the expectations of the consumer regarding the sound quality
of a specific brand and/or model of the vehicle. While there
are times where quieter is better [8], quietness is not always
the ultimate goal. Quietness is seen as undesirable most of
the time to avoid creating a monotonous environment inside
the vehicle [7]. In fact, there are products sold in order to



increase the sound of a car and break through the silence.
Seeing as that sound plays a large factor to the driving

experience, this begs the question of where a large-scale
dataset exists specifically for visual and audio data inside
a vehicle. There has been a recent revolution in computer
vision due to the success of deep learning [9], but in order
for us to properly train these models we need a significant
amount of annotated data and computational resources. We
have seen an expanding amount of these large-scale datasets
regarding the visual aspect of a drive such as CamVid [10],
KITTI Vision Benchmark Suite [11], Cityscapes [12], Leuven
[13], Daimler Urban Segmentation [14], etc. However, of
the aforementioned datasets none take focus on the driver or
the inside environment. Other projects have collected data
looking towards the driver such as Brains4Cars [15] and
MIT-AVT [16], but these also follow the trend of not making
acoustics an essential portion of their data.

Another recent trend has been integrating synthetically-
rendered data from sources like the Grand Theft Auto V
engine [17] which we began using before having access to
physical vehicles. We previously had used the Grand Theft
Auto (GTA) V (Rockstar Games, NY) game to generate
different interactive scenarios. During the task, the agent
was exposed to various sounds due to environmental factors
and other external auditory stimuli, such as pedestrians and
traffic. We also took control of the radio and included a
passenger who would speak on command to create a con-
versational environment inside the vehicle. Soon afterwards,
we were offered the use of one of the cars, the Lincoln MKS,
at Berkeley DeepDrive and promptly started collecting real-
life data.

As a result, in this paper we present an ongoing, novel,
audio-visual project aimed towards providing a diverse and
comprehensive dataset for a vehicle’s interior and exterior.
Our dataset has the following characteristics:

1) This first subset is over 100K image frames with
annotation. We divided our dataset into different ex-
perimental drives between different days. This was
in order to keep similar weather conditions grouped
together.

2) Our dataset has survey-grade dense 3D point cloud for
static objects as well as inertial measurements, wheel
speeds, and a variety of the vehicle’s information.

3) Annotated events happening inside the vehicle (such as
people speaking, radio state, etc) as well as bounding
boxes over anybody inside the vehicle.

II. RELATED WORK

As mentioned before, the safety of drivers has improved
over decades of research through driver modeling studies [19
- 21] that develop the understanding of predicting driver’s
behaviors. Despite these advances in visual perception and
driver modeling, there still exists an absence of an essential
component to the vibro-acoustical system: the driver, pas-
sengers, and vehicle. This work builds upon findings from

sound recognition and psychoacoustic sound evaluations. A
driver’s emotional state has been recognized to significantly
affect the safety of driving.

Most works on noise treatment inside the vehicle have fo-
cused solely on noise detection or reduction for adjustments
during the design of the vehicle. Several psychoacoustic
indices have been introduced in sound quality evaluation
engineering [22], [23] and evaluated in various driving
scenarios. For instance, in Nor et al.’s [24] studies both
subjective and objective tests are conducted to evaluate vehi-
cle comfort index. They found that the metrics of loudness,
sharpness, roughness, and fluctuation strength are correlated
with human subject studies. Additionally, they showed how
the acoustical comfort is affected by each of these metrics.

Another notable study on noise in a vehicle’s interior
was Duan et al. [25] who studied the acoustics in different
conditions of the vehicle: idle, constant speed, accelerating,
and braking. They proposed to predict the sound quality by
using a neural network. The input features used were four
psychoacoustic parameters: loudness, sharpness, articulation
index, and A-weighted sound pressure levels (SPLs) and
subjective annoyance was used as a label to train the network.
They then created a dataset composed of 36 interior noise
samples from the vehicle in the aforementioned vehicle con-
ditions. The measurement followed the GB/T 18697 standard
and their results showed an accuracy above 95.57%.

Although there have been several psychoacoustic indices
proposed in the past years, when one is driving this infor-
mation alone is not useful for identifying the sound source
of annoyance. A candid way of going about this problem
is to separate the sound events and compute the annoyance
of each one, but the detection and segmentation of general
sound events is still not a well-solved problem.

A challenging task in sound recognition is the classifi-
cation of individual sounds in composite sounds. The task
is known as polyphonic sound event detection and consists
of detecting multiple overlapping sound events. There have
been several approaches proposed including transfer learning
[26], cross-modal learning [27], and deep learning methods
[28].

One particular problem of learning from sound samples is
the lack of large-scale annotated data. This type of absence is
particularly true for sounds from the vehicle interior as most
of the available sound datasets are composed of ambient,
event, or mixed sounds. Apart of being influenced by various
uncorrelated and dynamic factors, the sound in the interior
of the vehicle also affects people differently. Thus, we focus
on creating a dataset to test our learning algorithms.

III. METHODOLOGY

In order to collect this data, we used the vehicle in Figure
3 courtesy of Berkeley Deep Drive. The specifications of the
vehicle and hardware used to collect data can be found in the
section labeled ”Hardware.” All drives were conducted by the
investigators and each different event or internal environment
change is separated by an audible clap from one of the



(a) Bounding Boxes (b) Heat Map

Fig. 1: Annotated Frames for each frame of video. Bounding boxes are given to localize where a sound will be coming
from and a heat map is done to localize sound and annoyance.

investigators in order to make synchronization simpler for
those using the data.

We used various different routes inside the Richmond
Field Station in Richmond, CA to get the environment of
a quiet park as well as paved roads and dirt roads. From
this station, we drove to University of California, Berkeley
campus in order to capture data on the freeway and in
downtown Berkeley. These different environments allow us
to gather various different outside scenarios whether this
be honks from other cars, ambient speech from pedestrians
passing by the vehicle, or the sounds of afternoon traffic.

The initial focus that we investigated were the auditory
aspects caused by actions that could be taken by an agent.
That is, we first decided to analyze controlled environments
that an autonomous car could control. We created different
scenarios that included various combinations of states from
the windows, radio, air conditioner, and speeds. During most
of these experiments, we decided to stay silent inside the car
so that we have data where our agent could focus on the
aspects it could control.

It is also imperative to treat the driver and passengers
as components of the vibro-acoustical system since they
also contribute to the overall soundscape inside the vehicle.
Therefore, in order to collect a variety of soundscapes we
created scripted events for the passengers and driver of
the vehicle. For example, in one drive a driver might be
asked to talk amongst themselves for two minutes while
all others inside the car remained quiet. This could be
done for all other passengers. We also recorded instances
of conversations between two different people and instances
of people speaking at the same time. Annotations of where
a sound is coming from and who is speaking is shown on
Figure 1.

Apart from collecting our data, we implemented an
exploration-exploitation approach based on deep reinforce-
ment learning where an agent learns actions to decrease
the annoyance – further improving an existing framework
to run on our simulations and collected data. Seeing as that
the sound in the vehicle’s interior is influenced by several

Fig. 2: Our approach is based on a deep reinforcement that
learns from the environment how to change the state of the
vehicle to avoid an unpleasant environment. After the agent
took action, ai, considering the environment state, si, our
system computes the reward, ri, using the psychoacoustic
annoyance (PA) metric. The reward, the action, and the
environment states are used to train a neural network that
approximates the Q-function. The neural network is poste-
riorly used to decide which action the agent should take to
decrease annoying sound.

uncorrelated and dynamic factors, our agent can learn from
the environment how to change the state inside the car to
reduce the psychoacoustic annoyance levels for the driver.
Figure 2 depicts the main steps of the learning method.

A. Learning

In our paper, we formulate the problem of choosing an
action that avoids annoying sounds as a Markov Decision
Process (MDP). Let A = a1, . . . , an be a discrete action
set and S the state set where the agent takes action ai
considering the environment state si represented at the i-step
of the episode.

An action ai leads to a state transition from the state si
to si+1 and an immediate reward ri. In order to maximize
this accumulated reward R defined as

R =
∑
i

γk−1ri, (1)



where γ ∈ [0, 1] is the discount factor for future rewards, the
learning process tries to minimize the loss function:

L =
1

2
(r + max

a′
Q(s′, a′)−Q(s, a))2, (2)

where Q(s, a) is the function that gives the best score after
performing the action a on the state s.

Our approach used a ε-greedy strategy to explore the
action space and learn the result of each action on the
annoyance metric. With a probability ε, we randomly select
an action and with probability 1−ε we follow the action that
maximizes the quality of current and future actions. Thus,
probability 1− ε the action is determined by the policy

π(si) = arg max
a

Q(si, a). (3)

The Q-function is modeled by a multilayer perceptron net-
work, which receives as input a state vector and returns a
vector containing the Q-value for each possible action. This
network is initialized with random parameters.

B. Immediate Reward

The sound impression for a human listener can be esti-
mated by the following psychoacoustic properties [29]:
• Fluctuation and Roughness: When we have multiple

signals with different frequencies in an environment,
they might interfere constructively and destructively
with each other creating modulation. In other words,
the amplitude of a sound signal rise and fall over time.
Fluctuation and roughness measure the modulation of
signal over time. Fluctuation, F, was designed to work
with up to 20 modulations per second and can be given
by:

F ≈ ∆L

4Hz/fmod + fmod/4Hz
, (4)

where ∆L is the modulation depth and fmod the mod-
ulation frequency. The roughness R describes sounds
with modulations range from 20 to 300 times per
second, and can be computed as being the product:

R ≈ ∆L× fmod. (5)

A modulated signal is more unpleasant when having a
higher roughness and fluctuation;

• Loudness: The loudness is not a physical phenomenon,
rather a psychological phenomenon which is based on
perceived loudness. Differently from the sound level
that is a physical measurement, the loudness was de-
veloped based on human subject studies in persons
with normal hearing. Each person listened to a tone at
frequency f and a particular dB level, a second tone
would be played at a different frequency. The level
of the second tone would be altered until it sounded
equally as loud as the f tone. Let ETQ be the excitation
at threshold in quiet, and E0 e the excitation of the
reference intensity, the specific loudness of a sound with
excitation E is given by

N ′ = 0.08(
ETQ

E0
)[(0.5 + 0.5

E

ETQ
)− 1]. (6)

The total loudness is the result of integrating the spe-
cific loudness over critical-band, the smallest band of
frequencies that activates the same part of the basilar
membrane in the human hearing system, rates, i.e.

N =

∫ 24

0

N ′dz, (7)

where z is the critical-band in Bark.
• Sharpness: A function of the spectral composition. It is

estimated by a weighted sum of specific loudness levels
in different bands. The total sharpness is given by

S =

∫ 24

0

S′dz, (8)

where S′ = 0.11
N

∫ 24

0
N ′g(z)zdz is the specific sharp-

ness and g()̇ is a critical-band-rate dependent weighting
function. The sound with higher sharpness is more
unpleasant and annoying.

The sound annoyance is closely related to the aforemen-
tioned psychoacoustic indices. Zwicker proposes to compute
the psychoacoustic annoyance (PA) [29] as a function of
sharpness, loudness, fluctuation, and roughness as follows:

PA = N5(1 +
√
ω2
S + ω2

FS), (9)

where N5 is the 95th percentile of loudness and

ωS =

{
−(S − 1.75)log(N5 + 10), S > 0

0, otherwise,
(10)

ωFS =
2.78

N0.4
5

(0.4F + 0.6R). (11)

We define the immediate reward as being a function of
psychoacoustic annoyance metric, i.e., ri = f(PA) is given
by the PA metric, where f()̇ is the shape function f(x) =
1− ( x

MAXPA
)0.4 and MAXPA is the maximum acceptable

value for PA. In our experiments we used MAXPA = 27.

IV. HARDWARE

The most essential portion to collecting data for naturalis-
tic driving is having the appropriate hardware and software
to efficiently grab the information of your surroundings. We
were fortunate enough to use one of the vehicles, a Lincoln
MKS, owned by the Berkeley Deep Drive Team shown in
Figure 3.

This vehicle was designed to satisfy the following goals
and requirements:

1) Timestamped Sensor Recording: Recording all
mounted sensors and data streams in a way that each
sample of data is timestamped using the centralized
and reliable timekeeper in the Robotics Operating
System (ROS). The resulting data is saved into a .ros
file to work with all the captured data in one central
location.

2) High Resolution Video: Capture and record one to
eight mounted cameras at 720p (2.1 megapixels) res-
olution at 60 frames per second (fps). The camera



Fig. 3: The vehicle provided by Berkeley Deep Drive. An annotated picture for visualization of where each instrument lies
on the vehicle.

position, resolution, and compression were already set
when we were given access to the vehicle.

3) CAN Bus: Collect vehicle information from the Con-
troller Area Network (CAN) bus of the vehicle [18].
Every vehicle has different ports and bus utilization
policies. These raw CAN messages are recorded in
various different ROS topics for organization.

4) Nonintrusive Design: The system is designed in such
a way so that the driver experiences as close to
a naturalistic drive as possible. In order to capture
realistic data the design was done so that the driver
does not have to modify their driving for the vehicle.

The platform is equipped various tools to meet the afore-
mentioned requirements. Figure 3 has been provided for
the visualization of where each instrument may lie. The
instruments used are as follows:
• Computer: A computer was installed in the trunk of the

vehicle to avoid driver disruptions and control the other
instruments used. The computer is a System76 Leopard
WS with an Intel i7-7800X processor, 64 GB DDR4, 4
TB SSD, and an Nvidia GeForce 1080Ti.

• Cameras: Mounted atop the vehicle are eight Logitech
C922 video cameras pointing outwards towards the
street in a circular formation to get a 360◦ view of the
vehicle.

• GPS: A Novatel GPS-701-GG/FlexPak6 DGPS is used
to record the GPS information.

• LiDAR: A Velodyne 64E-S2 was used as our surveying
tool to get the depth of our surroundings.

• IMU: A Lord GX4-45 was used as our Inertial Mea-
surement Unit (IMU).

Unfortunately, those who created the vehicle specifications
did not take auditory signals or inner car information into
account when building the instrument. Therefore, we pro-
vided our own instruments to take the necessary data for the
dataset. We utilized a GoPro Hero 5 and two Olympus ME-
51S stereo microphones with deadcats for each microphone
to reduce wind noise. One of the microphones was connected
directly to the GoPro in order to synchronize the inside noise
with the inside video. The other microphone was connected
to the on-board computer to record sounds happening outside
of the vehicle.

V. TRIPS AND FILES

This section will define how trip data files may be stored
in a trip directory. A trip directory means that a driver took
their vehicle from start to finish. These are files that are
extracted from either a GoPro Hero or the Lincoln MKS
computer and placed into a central server to be filtered,
cleaned, synchronized, and processed.

A. Trip Day Folders

Trip day folders are directories that separate drives by any
given day. This was done so as to have an organized platform
that can be separated by any environmental conditions that
cannot be controlled (sunny, overcast, etc). All will be
formatted in the following manner:
• YYYY-MM-DD: These directories will hold all the

experiments done on the day of the directory name.



B. Trip Data Files

Trip data files are the endpoint of all streams from every
sensor for each drive. This includes many CSV (comma
separated values) with timestamped information. The trip
data files are separated between file types for consistency
and organization as follows:

• Rosbag: These .ros files contain a variety of information
from any given car ride. They are as follows:

– velodyne packets: Raw data packets from Velo-
dyne LiDAR sensor. Captured at 10 Hz.

– velodyne points: Accumulated Velodyne points
transformed in the original frame of reference.
Includes fields for ”intensity” and ”ring.” Captured
at 10 Hz.

– nmea sentence: GPS sentences with the data type
GGA. This includes the essential current fix data
which provide 3D location and accuracy. Captured
at 182 Hz.

– usb camX/camera info: Includes overall camera
information for all 8 usb cameras. Captured at 30
Hz.

– usb camX/image raw/compressed: Compressed
raw images for all 8 usb cameras. Captured at 30
Hz.

– vehicle/acc ped eng: Includes throttle rate, throt-
tle pc, and engine rpm (revolutions per minute).
Captured at 101 Hz.

– vehicle/brake ped: Shows if brake pedal is being
pressed. Captured at 50 Hz.

– vehicle/brake torq: Includes brake torque request,
brake torque actual, and vehicle speed. Captured at
50 Hz.

– vehicle/gear: Which gear the vehicle is currently
using. Captured at 50Hz.

– vehicle/imu/data raw: The orientation, angu-
lar velocity, and linear acceleration along with the
covariance for each of the three aspects. Captured
at 50 Hz.

– vehicle/joint states: Position and velocity of each
wheel and the steer on the front left and front right.
Captured at 116 Hz.

– vehicle/steering ang: Steering wheel angle. Cap-
tured at 50 Hz.

– vehicle/steering torq: Steering wheel torque. Cap-
tured at 50 Hz.

– vehicle/suspension: Front and rear suspension.
Captured at 50 Hz.

– vehicle/tire press: Tire pressure for each wheel.
Captured at 2 Hz.

– vehicle/turn sig: Whether turn signal was being
used or not. Captured at 1 Hz.

– vehicle/twist: Linear and angular twist of entire
vehicle. Captured at 50 Hz.

– vehicle/wheel speeds: Records the speed of each
of the four wheels in miles per hour. Captured at
100 Hz.

• CSVs: The .csv files are extracted information from
the .ros files with the timestamp (seconds and nanosec-
onds) for readable format without the necessity of
using ROS. As of now the only information ex-
tracted is nmea sentences, vehicle/gear, and vehi-
cle/wheel speeds.

• GoPro: Includes the original .mp4 files from each drive
along with an .lrv (low resolution video) version.

• Processed Video: Full, uninterrupted .mp4 video from
GoPro since they are automatically split after approxi-
mately 15 minutes.

• Images: The .jpg files which correspond to the frames
of the .mp4 files at 10 frames per second.

C. Filtering Criteria

The main focus of this project was to grab a large amount
of diverse data, but our main priority was to capture audio
and visual data inside the vehicle. Periodically, and for
some unexplained reason, the GoPro would record the visual
portion of the video as expected, but the audio was not
recorded whatsoever. Therefore, any drive taken that had the
audio dropped was not included in our dataset. The video
of the inside of the vehicle and its remaining data has been
retained in the event that anybody would need such data.

VI. CONCLUSIONS

Our overall contribution from this study is a diverse,
comprehensive, novel driving dataset with annotations. This
dataset comes with comprehensive annotations that are nec-
essary for a complete driving system. Alongside the data
on the interior of the vehicle, we collected a variety of the
vehicle’s information spanning from the wheel speeds to the
depth of its surroundings.
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