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Abstract 
Large introductory programming courses are experiencing an increase in class sizes, as 

they often see the enrollment of hundreds of students. Automated grading has become crucial 

in supporting courses of this size by assisting instructors in reducing grading time and course 

costs. However, there is an issue that sometimes novice programmers are frustrated by 

autograded systems as they don't provide enough feedback for complex questions. We have 

designed a study that will examine if gradually increasing question complexity, based on 

Bloom’s Taxonomy, for auto-graded exercises will lead novice programmers in non-CS majors 

to learn more effectively and efficiently. Additionally, we will survey students to measure student 

perception on automated grading as well as their self-efficacy regarding their programming 

skills. Examining perception is important because providing a positive student experience is 

critical for cultivating an effective learning environment. 

Question difficulties are rated in regards to the revised Bloom’s Taxonomy. To measure 

effective learning, we will analyze student exam scores after the completion of a lab that 

consists of automatically graded programming exercises. To measure efficient learning, we plan 

to analyze the time spent on each exercise, number of attempts made before submitting an 

exercise, and the following exam score. 

We conjecture that scaling the question complexities from lower to higher orders of 

thinking will produce the most effective and efficient student learning. We expect to see that this 

modified progression of exercises will result in higher student self-efficacy and more positive 

opinion of the exercises and the automated grading itself. The three research questions we 

seek to answer are as follows: 

● RQ1: Does scaling exercise difficulty on Cody Coursework impact student performance? 

● RQ2: Is student learning efficiency affected by scaling exercises on Cody Coursework? 

● RQ3: How do students perceive their learning experience when question difficulty on an 

AGT is scaled? 

  

 



Background 

As AGTs have become an essential component in computer science education, they 

have also been subjected to numerous studies. The bulk of these studies cover changes in 

student performance after the integration of an AGT as well as student perception of AGTs. A 

considerable amount of  

There are numerous Autograders available for beginner programmers and instructors. A 

few popular examples include CodingBat (Parlante), Practice-it (Bowden), and Gradescope 

(Singh). The AGT we utilize is Cody Coursework; Cody Coursework is unique in the fact that it 

grades programs written in the proprietary language MATLAB, owned by MathWorks. It is also 

web-based, similar to CodingBat and Practice-it, but Cody Coursework allows for instructors to 

write their own exercises and test cases.  

 AGTs have multiple applications in computer science classrooms, and typically are used 

in a way that complements the instructor’s taste. The three most common include: an in-class 

active learning supplement(Benotti, Pettit), as a laboratory grading platform (Pettit, Barr), and as 

assigned homework(Benotti, Pettit). 

 AGTs have been shown to benefit student performance in several regards. Courses 

that have implemented AGTs have experienced reduced dropout rates (Pettit). In the case of 

two Argentinian Universities, UTN and UNC, they experienced an early drop-out rate decrease 

from 28% to 14% and 58% to 35% respectively (Benotti). Those students had successfully 

passed the first exam on the first try or on the re-test, as the failure rate had remained relatively 

unchanged. The improvements in student retention and passing rates were attributed to 

allowing students to learn at their own pace. Classrooms that have implemented AGTs in their 

coursework have also experienced an overall increase student grades (Pettit, Cohenour). In the 

case of Oregon University, the first semester that integrated CodeLab (Barr) saw the average 

class GPA rise from 2.0 to 2.2 on a 4-point grading scale.  

In a large meta study (Pettit) that analyzed AGTs in computer science education, they 

had deemed that student perception was ambiguous. However, it is important to note that 

many of the negative-opinion papers, and some of the positive-opinion papers are over ten 

years old, and may contain outdated perceptions. We intend to study student perception of 

AGTs to assist in providing a current look at student perceptions of AGTs. 

Students who rated the tool positively often praised the opportunity to receive feedback 

before the final submission of the assignment (Benotti, Selby), which encouraged them to make 

 



multiple attempts to strive for a higher grade. This increased exposure to the material may have 

positively impacted their overall understanding of the material as well. 

On the other hand, students who had rated the AGTs negatively almost unanimously 

disliked the level of precision required from their programs (Pettit). The finicky nature of some 

AGTs would penalize students who may have been close to the correct solution, leading the 

students to still receive a low grade (Pieterse). Some students also showed skepticism of the 

grading without human intervention. 

Bloom’s Taxonomy is one of the most commonly used models that describes a 

learner’s level of understanding of a topic based on cognitive domains. It has been effective in 

assisting instructors in various fields in structuring coursework, homework assignments, and 

assessments (Bruyn, Dorodchi, Errol, Selby). The taxonomy has also been widely used in 

computer science education to provide a way for instructors to accurately compare 

programming question complexities across several topics (Dorodchi). Lastly, it has also been 

used to teach computational thinking while using programming as a tool (Selby).  

We wish to combine these areas of research by extending the learning concepts 

proposed by the revised Bloom’s Taxonomy to the domain of AGTs. Specifically, we analyze if 

scaling question difficulty from the lower orders to the higher orders of Bloom’s taxonomy within 

AGTs will increase student performance and perception; to our knowledge this is the first study 

of its kind. 

Methods 
We are implementing our study into the lab sessions of an introduction to MatLab course 

at North Carolina State University. This course, similar to many other programming courses, 

consists of a large lecture session of around 250 students, with 8 weekly laboratory sections 

made up of about 20-30 students each. The lab sessions are 2 hours and 45 minutes, and 

begins with review session led by a teaching assistant. After review, students are asked to 

complete 3-5 exercises on Cody Coursework in which they can work with a partner. These 

exercises conclude lab activities. Throughout the course, there are formative exams in the 

weeks following labs 4 and 8, and a final summative exam after lab 10.  

For our study, we divide the lab sections into 4 experimental sections, and 4 control 

sections. We are imposing a special treatment to labs 4 and 8: experimental sections will solve 

4 exercises that progressively become more complex in regards to Bloom’s Taxonomy, whereas 

the control sections will solve the same questions, but unordered. After the students solve these 

exercises, they will then complete a short post-lab survey measuring their perceptions of their 

 



self efficacy, the exercises themselves, and Cody Coursework. We will be collecting data 

regarding the number of pretests the students have ran, the time it takes for them to complete 

the exercises, and we will also be implementing questions in the formative exams following labs 

4 and 8 that target the topics covered in labs 4 and 8.  The time taken and number of pretests 

compared to correctness of target exam questions will measure learning efficiency. Correctness 

of targeted exam questions and correctness of check-in question will measure learning 

effectiveness. 

Following the final lab, lab 10, the students will also complete and end of semester 

survey, which is more in-depth than the post lab surveys and includes more questions about the 

students’ perceptions of Cody Coursework, followed by the exercises, followed by their self 

efficacy. This final survey, along with the previously discussed post-lab surveys will measure 

student perceptions. 

We will be comparing data between the control and experimental sections based on lab 

and the lab’s following exam. We will not be comparing data between labs 4 and 8 to draw our 

conclusions. This applies to all the metrics we are using to measure learning efficiency, learning 

effectiveness, and student perception. 
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