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Abstract

We present an automatic segmentation methodology for fast and accurate seg-
mentation of dermoscopic images based on fully convolutional network architec-
tures. Our algorithm was submitted to the ISIC 2018 Skin Challenge and the
raw Jaccard index was 0.86 on the provided validation data.

1. Introduction

There are over 5 million new cases of skin cancer in the United States every
year [1]. Although melanomas represent fewer than 5% of all skin cancers in the
United States, they account for approximately 75% of all skin-cancer-related
deaths. Every year they are responsible for over 10,000 deaths in the United
States, and over 60,000 deaths globally [2, 3]. Observable as pigmented lesions
occurring on the surface of the skin, melanomas can be detected by expert visual
inspection. They are also amenable to automated detection with image analysis.
Given the widespread availability of high-resolution cameras, algorithms that
can improve the ability to screen and detect troublesome lesions can be of great
value [3].

Segmentation, the partitioning an image into non-overlapping regions, each
of which is homogeneous in one or more features and maximal in terms of this ho-
mogeneity, is usually the first process in the automated detection of melanoma.
It brings to light regions of interest in the dermoscopic image that can be fur-
ther examined. This paper explores a segmentation methodology based on Deep
Learning, specifically Fully Convolutional Network (FCN) architectures, that
have traditionally achieved high accuracy in computer vision related task such
as segmentation, classification, etc [4].

2. Methodology

2.1. Data

Our data was extracted from the ISIC 2018: Skin Lesion Analysis Towards
Melanoma Detection grand challenge datasets [5, 6]. The training data consists
of 2594 images and 2594 corresponding ground truth response masks of varying
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Figure 1: Sample images and associated segmentation predictions

sizes. The data was augmented using random rotations, lighting alterations, and
random dihedral flipping so as to increase the training sample. Though most of
the images were in a 3:4 aspect ratio, images were resized to squares when used
for training to comply with the model’s required input size. The model was
trained at 2 input resolutions, 512*512 and 1024*1024, so as to obtain features
maps of different sizes that could be used in tandem to segment.

2.2. Network

First attempts at segmentation were done without a pretrained network, and
these didn’t achieve compelling results. Furthermore, training took days and
utlized large amounts of storage (over 10 GB). Fully convolutional networks
(FCNs) extract features through the application of convolutional filters and
train parameters through back propagation. As these have proved incredibly
effective in representation learning, we use ResNet34 pretrained on the ImageNet
dataset as an encoder [7]. To this backbone, cropped at the adaptive pooling
layer, we finetuned using our data and attached a custom head to upsample
the images. As information may be lost in the compressing of the images to
filters and finally segmenting, the idea of Unet inspired activation copying and
concatenation was used to decode [8]. A mixture of simple 2D Convolutions
and cross convolutions were applied and concatenated at each level to output a
probability map for each input image. These probability maps outputs of size
1024*1024 were then converted back to their original size using nearest neighbor
interpolation and were subsequently outputted as final segmentation masks.

Code was written in Python with the Torch and Fast.ai libraries, and run on
an Nvidia GPU. The learning rates and number of epochs were varied between
the epochs of training (those of size 512*512 and those of size 1024*1024) to
prevent overfitting on the training sample while finetuning. The learning rate
for smaller images were 1e−2, 1e−3 and 1e−4 and for larger images the rates
were 5e−2, 5e−3 and 5e−4. Adam optimizer was used to improve training in
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conjunction with BCEWithLogitsLoss which applied a sigmoid transform before
calculating cross entropy loss. The total number of parameters trained exceeded
1 million.

3. Results

The accuracy on a random validation split of 500 images from the training
sample as calculated by raw Jaccard index (intersection over union) was 0.86
on average. For the ISIC challenge, images with less than 0.65 Jaccard score
were to be discarded when computing the final score. With this in mind, our
resulting accuracy was 0.71 on the validation sample provided by the organizers.

4. Discussion

On examination of the images that the algorithm had difficulty with, we
could see that modifications should be made when segmenting lesions that cover
the entire image. This class of image was the only one which fell below 0.65
during validation. As scope for improvement, experimenting with different en-
coders such as Densenet or Resnet50 may yield better masks. Training at higher
resolution, such as 2048*2048, may provide features that improve the borders
of the masks. Due to storage limitations, these methods were not implemented.
Increasing the sample even by 400 images in the final stage of image training
improved performance significantly, thus with more training images the network
will achieve greater accuracy.

Figure 2: An image our algorithm couldn’t accurately segment
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