
Designing a Low-Cost Universal Chip Programmer Using an FPGA

Jacob Hazelbaker

July 31, 2018

Abstract

Universal chip programmers enable the user to read and write to a wide variety of programmable chips,
such as EEPROM chips. However, these devices are often quite costly and the lower-end models often
are not capable of interacting with a very wide array of programmable chips. The goal of this research
is therefore to design a low-cost universal chip programmer using an FPGA and open-source IP core to
readily implement I2C communication between the programmer and the chip. To safely meet the different
voltage and current requirements of a wide variety of programmable chips, a custom PCB has also been
designed. The flexibility of the FPGA also allows for potential future development to this project, such as
the possibility of adding in logic analyzer capabilities.

.

1 Introduction

Programmable chips provide a great deal of flexibil-
ity in designing an electrical circuit, replacing what
otherwise might be a vast array of logic gates with
a single chip. Over the years many different types
of programmable chips have been developed to meet
various electrical engineering needs. The result is
a veritable cornucopia of programmable chips with
varying voltage and current requirements, differing
form-factors, and disparate communication protocols
required to perform read and write operations with
the programmable chip. For these reasons, many
chips require a specific unique type of programming
device to be able to safely program and read the chip.

Universal chip programmers, however, strive to be
compatible with a variety of different programmable
chips. Such devices help negate the need for purchas-
ing multiple different traditional chip programmers
to be able to interact with different models of pro-
grammable chips. Having a universal chip program-
mer on hand can thus be exceedingly convenient and
could potentially save time by nullifying the need to
go out and purchase a new traditional chip program-
mer when a project requires the use of a different kind
of programmable chip.

Even so, the often high cost of universal chip pro-
grammers makes it difficult for many engineers to
justify the investment. For example, the Xeltek Su-
perPro 6100 currently supports 102,239 different pro-
grammable chips, yet costs $1,595. [2] There are
several relatively inexpensive devices on the market
which are advertised as universal chip programmers,
but unfortunately such devices are by and large only
capable of writing to EEPROM chips. Moreover, the
universal chip programmers currently on the market
offer little opportunity for later expanding its func-
tionality, such as adding in the ability for the uni-
versal chip programmer to also serve as a logic ana-
lyzer. The design decisions for this project, therefore,
sought to create an open-source, relatively low-cost
universal chip programmer which could also perform
other functions, such as analyzing logic levels.

2 Hardware Selection

To provide a flexible development board which could
be programmed to be able to read and write to vari-
ous chips, it was decided that a Field Programmable

Grid Array (FPGA) would be used for this project.
The potential use of high-speed block RAM, intrin-
sic to many FPGAs, is particularly appealing for this
project, considering that data will often need to be
transferred to and from the chip very quickly.

Figure 1: Hardware Block Diagram

The often large amount of I/O pins provided on
FPGA boards would also prove to be quite bene-
ficial, making it possible to connect each pin of a
programmable chip with its own dedicated I/O pin
on the FPGA board. After an extensive search, the
DE10 Nano FPGA kit was chosen, which features
a Cyclone V FPGA, a dual-core ARM co-processor,
and 1 GB of DDR3 RAM. [1]

The FPGA is to be connected to a custom PCB
which will ensure that the correct voltage and current
levels are applied to the programmable chip. A 42-
pin universal chip seat has been selected to provide a
convenient way to connect to a wide array of different
programmable chips. I/O jumper wire ribbons have
been purchased to connect the FPGA to the custom
PCB and the custom PCB to the universal 42-pin
seat where the programmable chip will reside.

1

Figure 2: Custom PCB Will Power the Chip Via a Buck Converter Set by a Digital Potentiometer

3 Custom PCB Design

Different brands and models of programmable chips
often require that different voltages and currents be
used when interacting with the chips. For this rea-
son, it soon became apparent that simply wiring the
I/O pins of the FPGA directly to the pins of a pro-
grammable chip might not work properly and could
quite possibly damage some programmable chips.

3.1 Buck Converter

To overcome this challenge a custom PCB is to be cre-
ated with includes a buck converter to create a vari-
able voltage supply to power different types of pro-
grammable chips. This portion of the custom PCB,
the design of which is shown in Figure 2 above, will be
connected to the Vcc pin of the programmable chip
to supply the chip with power.

Initially, the buck converter was introduced into
the custom PCB by using base components. This
proved, however, to be a very difficult task and re-
sulted in an initial design which did not perform par-
ticularly well in the LTSpice simulations. Thus, the
design decision was made to implement a buck con-
verter as shown in Figure 2 using the TPS560430Y
buck converter chip by Texas Instruments, which can
readily supply a variable output voltage (Vout) rang-
ing from 1 Volt to 24 Volts. [4]

The input voltage depicted in Figure 2 is currently
set at 12 V, though the TPS560430 buck converter
chip is capable of operating with an input voltage
from 4 Volts to 36 Volts. [4] Since buck converters
work by stepping down the input voltage to a stable
output voltage of a lesser value, this custom PCB
could readily be hooked up to a higher input voltage
in order to be capable of providing an output voltage
of up to 24 Volts, which is moreso in the range which
some Programmable Logic Controllers (PLC) require.

Texas Instruments provides an example testing
module schematic for the TPS560430 family of buck
converter chips. [5] This example schematic was
greatly helpful in the effort to produce the buck con-
verter portion of the custom PCB as depicted in Fig-
ure 2. One of the key differences between the Texas
Instruments example testing module design and the
custom PCB designed for this project is the inclu-
sion of a digital potentiomer to control the output
voltage of the buck converter circuit. This makes it
possible to connect a few I/O pins of the FPGA to
the digital potentiometer to set the output voltage of
the buck converter digitally. The particular digital
potentiomer chosen for this project is a Texas Instru-
ment TPL0102-EP dual channel digital potentiomer

with 256 resolution. [3] The wide resolution is par-
ticularly advantageous since it could therefore allow
256 different voltages levels from 1 Volt to 24 Volts
with approximately 90 milli-Volts steps between each
possible voltage level of Vout. The TPL0102-EP also
stands out from alternative digital potentiometers in
that it operates at a high frequency of 2.1 MHz. [3]

Another distinct advantage of the TPL0102-EP
digital potentiometer is that it is dual channel. [3]
Therefore, there are in fact two diggital potentiome-
ters contained within one form factor. This opens
up the possibility to later implement the ability to
control the output voltage of a second buck converter
to specify a very specific voltage for a second pro-
grammable chip. Such a feature could be useful for
writing to multiple chips at once or to perhaps per-
form logic analysis on two chips simultaneously.

3.2 Current Mirror Considered

Throughout the design process of the custom PCB,
a great deal of consideration was given to ensuring
that the amount of current supplied to the pins of the
programmable chip would fall within the safe current
range as designated by each chip manufacturer. If
too much current is supplied to the pins of the chip,
then the chip might not be able to properly perform
read or write functions. Too much current might per-
manently damage the chip.

To address these concerns, various methods for
controlling current were investigated, the most
promising of which was the NMOS current mirror
depicted in Figure 3. Ultimately, this was not imple-
mented into the design of the custom PCB, as it was
later realized that this is unnecessary for the vast ma-
jority of the programmable chips. Even so, this work
may prove useful for future iterations of this project
if it later does become useful to precisely control cur-
rent flow.

Figure 3: Current Mirror Considered

2

The NMOS current mirror circuit depicted in Fig-
ure 3 functions by allowing the designer to set the
value of R1, in order to control the current which will
flow through R2. Since the gate pins of both N-type
MOSFETs are tied together, the current which flows
through R2 will ”mirror” the current which flows
through R1. This could be quite useful in creating
a circuit which has an unknown load that requires a
precise current supply.

LTSpice was utilized to simulate the NMOS current
mirror circuit. In the tests R2 was set at a constant
value of 1 kΩ. The resistance of R1 was varied to
simulate how the FPGA might control a digital po-
tentiometer in place of R1 to vary the current, if the
NMOS current mirror is later implemented into the
design of the custom PCB. The results of these tests
are summarized in Table 1.

R1 (kΩ) IR1 (µA) IR2 (µA) VR2 (V)
0.2 245.12 245.12 0.25
1 227.74 227.74 0.23
5 171.57 171.57 0.17
10 133.97 133.97 0.14
100 32.09 32.09 0.03

Table 1: Current Mirror LTSpice Simulation

As can be seen in the LTSpice simulation data pre-
sented in Table 1, the current which flows through R2
does indeed match the current which flows through
R1. It could be expected, however, that a replication
of the experiment with physical components might
yield slightly different results. Variance in the resis-
tance of the R1 resistor could potentially be com-
pensated for by calibrating the digital potentiometer
which would be in place of R1. However, differences
between the gain curves of the N-type MOSFETs
could result in slightly different currents through R1
and R2, despite VGS being the same for both of the
MOSFETs.

Aside from the realization that the use of the
NMOS current mirror within the custom PCB is un-
necessary, there were concerns as to how the voltage
across R2 would be affected by controlling the cur-
rent through R2. After all, R2 represents the load of
the chip. The initial plan was to provide a current
mirror for each pin of the programmable chip so that
each pin would be sure to have the precise amount
of current recommended by the manufacturer. How-
ever, it became apparent that it would be difficult to
control both the voltage and the current simultane-
ously and that it would be completely unnecessary
to do so since the custom PCB would in effect be
attempted to predict the load resistance of the pro-
grammable chip. The strategy thus became to ensure
that each pin of the programmable chip is supplied
with the precise amount of voltage recommended by
the manufacturer, and then the resulting safe amount
of current would inevitably flow through the chip,
assuming that the custom PCB is provided with a
power supply which can produce an adequate amount
of current. This design decision greatly simplified the
project and allowed further progress to be made.

3.3 Resolving Floating Pins

One of the interesting challenges faced when interact-
ing with the programmable chips is the need to ac-
count for floating pins. Much like a radio antennae, a
floating pin is not connected to a common ground
of the overall circuit, neither is it being forced to

necessarily represent what the overall circuit would
consider to be a logic high, such as 5 Volts.

Thus, interacting with a chip which has floating
pins can result in a great deal of ambiguity. For exam-
ple, if the pins of the programmable chip are directly
connected to the I/O pins of the FPGA, then what
the chip is outputting as a logic low might not truly
be what the FPGA considers to be ground. The volt-
age on the floating pins may rise to a voltage slightly
above the common ground of the overall circuit. Sim-
ilarly, when the programmable chip attempts to out-
put a logic high, the voltage which the pin actually
reaches may not at all match what the FPGA con-
siders to be a logic high on its I/O pins.

Figure 4: Pull-up Resistors and NMOS Gates

To resolve the issue of floating pins, pull-up resis-
tors have been implemented into the design of the
custom PCB, as depicted in Figure 4. Each pull-up
resistor is connected to a voltage source (Vss) which
represents what the particular make and model of
programmable chip expects as a logic high. For in-
stance, if the data-sheet of a given programmable chip
states that it considers 3.3 Volts to be a logic high,
then Vss would be set to 3.3 Volts.

In parallel with each pull-up resistor is an NMOS
transistor. The gate pin of each NMOS is connected
to a different I/O pin on the FPGA board. When
an I/O pin on the FPGA is set to a logic high, then
the NMOS transistor allows current to flow through
the transistor, thus tying the pin to common ground.
Conversely, when an I/O pin on the FPGA is set to
logic low, then the gate pin on the NMOS is low and
no current is permitted to flow through the NMOS
transistor. Thus, when an I/O pin on the FPGA is
low, the respective pin on the programmable chip is
pulled up to logic high (Vss) by the pull-up resistor.
When the I/O pin on the FPGA is high, then the
respective pin on the programmable chip is pulled
down to common ground, logic low.

This configuration makes it possible to reliably per-
form write operations to the programmable chip. It
should prove to be a simple, reliable solution to the
challenge of floating pins.

3

4 Programmable Chip Selected

With so many different types of programmable chips
on the market today, it became apparent that it
may be useful to initially choose one specific model
of programmable chip to focus upon. Electrically-
Erasable Read-Only Programmable Memory (EEP-
ROM) chips which communicate via the Inter-
Integrated Circuit (I2C) protocol are particularly
common. Thus, the example chip chosen for this
project is the M24128 family of 128 Kbit serial I2C
EEPROM chips by STMicroelectronics.

The datasheet for the M24128 family of chips reveal
that the chip has 5 main modes of operation:

• write to identification page,

• lock identification page,

• read from identification page,

• read from memory array, and

• write to memory array. [7]

To better understand how the M24128 family of
EEPROM chips function, a finite state machine was
created to represent how the chip will step through
each logical state. The resulting finite state machine
diagram is depicted in Appendix A. Each of the 5
different possible operations for the chip have been
highlighted in a unique color. The finite state ma-
chine provides a visual representation of the logic con-
trol structure for the M24128 family of EEPROM’s,
which could add a great deal of clarity when pro-
gramming the FPGA to interact with this type of
programmable chip.

5 Programming the FPGA

With an example chip chosen for the project, the
M24128 family of serial I2C EEPROM chips, the fo-
cus of the project shifted towards how the FPGA
might be programmed. The FPGA would be re-
sponsible for reading from and writing to the pro-
grammable chips, utilizing the custom PCB to ensure
that the correct voltages and currents are supplied to
the chip.

Verilog or VHDL are the two main languages which
can be used to program the FPGA. While Verilog
code might be easier to produce, VHDL is more
strongly-typed. The primary concern was that dur-
ing development of this project if Verilog was used to
program the FPGA then it might not throw an error
and compile the code with a loose set of assump-
tions. VHDL, on the other-hand, is more strongly-
typed and would likely not compile if a coding mis-
take was made. Thus, it was decided to use VHDL
for the programming of the FPGA with the hopes
that doing so would enable coding errors to be much
more easily identified.

Initially, a great deal of time was spent attempt-
ing to learn VHDL and to implement the I2C proto-
col so that the FPGA could communicate with pro-
grammable chips which utilize I2C. This proved to be
particularly challenging, especially when taking into
account the timings of the rising edge of the internal
clock of the FPGA in respect to the timing of the
clock to be used for the I2C communication.

Then it was realized that instead of implement-
ing I2C from scratch, a much more expedient option
would be to use an open-source intellectual property
(IP) core. After searching through various options,

an open-source IP core which implements I2C for
Master devices was discovered through OpenCores.
[6] The I2C IP core is provided in VHDL format and
takes into account the timings of the internal clock of
the FPGA. While there is no documentation for the
IP core and very few comments within the code, a
better understanding of how it is meant to function
was slowly gained through trial and error.

I2C utilizes 2 wires to communicate between de-
vices, referred to as SDA for the data line and SCL
for the clock line. The particular I2C IP core selected
for this project is operated by a set of logical inputs
and provides feedback through logical outputs. For
this project, the FPGA is the Master device, since it
is controlling what the programmable chip does. The
programmable chip is therefore the Slave device. A
visual summary of the logical and physical I/O of the
I2C IP core is depicted in Figure 5.

Figure 5: I2C IP Core I/O Diagram

One exceedingly useful aspect of the I2C communi-
cation protocol is that it can support multiple Slave
devices. It could therefore be possible to easily con-
nect multiple programmable chips to the FPGA to
quickly write data to multiple chips at once. This
could prove quite useful for manufacturers who may
wish to mass produce a product which contains a pro-
grammable chip.

To ensure that a solid understanding of the open-
source I2C IP core has been gained, a finite state
machine has been created to visually describe how the
FPGA would utilize the I2C IP core to interract with
the programmable chip. The most recent iteration of
this finite state machine is displayed in Appendix B.
This provides a framework by which VHDL can be
written to empower the FPGA to perform read and
write operations with the M24128 family of serial I2C
EEPROM chips.

6 Future Plans

The project will be continued by members of the Se-
curity in Silicon Lab (SSL), the research lab which
funded this project and whose members provided
me with guidance throughout the development pro-
cess. The custom PCB will be further developed and
printed. Then initial testing can begin with the hard-
ware components.

Adding in the ability for the FPGA to also serve
as a logic analyzer could be quite useful. This could
lessen the need for having on-hand an oscilloscope.
The FPGA could also be programmed to perform
many of the same functions performed by a Bus Pi-
rate. Not only could adding such functions to the
FPGA save money by reducing the need to buy ad-
ditional equipment, but doing so could save time by
negating the need to continuously move probe wires
around.

Enabling the FPGA to read the entire memory con-
tents of a programmable chip, then generate a hash
of those contents could potentially be helpful for de-
termining if a chip has been tampered with or if the

4

chip has the most recent version of the data. It may
also be helpful to keep a digital record which lists the
unique Identification Page number of each chip, fol-
lowed by a list of all of the different hashes which have
been generated from that chip’s data. This could in
essence provide a history of each time the chip’s data
was modified by the universal chip programmer.

Another possible area for future development of
this project might be to include in the chip’s mem-
ory array data or Identification Page a cryptographic
key. This could provide some indication if the chip
has been modified by a different programmable de-
vice, or by an unauthorized user.

7 Conclusion

Creating a low-cost universal chip programmer which
supports a wide variety of different programmable
chips could prove very useful for many people.
Adding additional functionality to the FPGA, such
as the ability to serve as a logic analyzer, could fur-
ther add value to this project.

The LTSpice simulations and resulting circuit for
the custom PCB have provided a foundation upon
which this project may be continued further. Re-
search into how the FPGA will be programmed to
interact with various programmable chips has yielded
finite state machines to describe both the function-
ality of the programmable chip itself and the I2C IP
core which will be running on the FPGA.

This project was exceedingly challenging, though a
great deal has been learned. As the project continues
to be developed and refined, perhaps it may enable a
great many people to create their own universal chip
programmers using relatively low-cost components.

8 Acknowledgements

I would like to thank the Security in Silicon Lab (SSL)
for their continued guidance throughout the develop-
ment of this project. The SSL has a presence in the
University of Central Florida as well as the University
of Florida. Dr. Yier Jin of the University of Florida
is the faculty advisor for the Security in Silicon Lab.

I would also like to thank the Computing Research
Association Women (CRA-W) for providing me with
the opportunity to engage in this research project this
summer. The CRA-W graciously provided me with
financial support and connected me with a faculty
mentor, Dr. Yier Jin, so that I could gain research
experience prior to beginning my graduate studies.
Thank you for believing in me!

References

[1] Terasic Inc. DE10-Nano Kit. url: https : / /

www . terasic . com . tw / cgi - bin / page /

archive.pl?Language=English&CategoryNo=

205&No=1046&PartNo=2#section. accessed:
07.26.2018.

[2] Xeltec Inc. SuperPro 6100. url: https : / /

www . xeltek . com / universal - programmers /

superpro-6100-universal-ic-chip-device-

programmer/. accessed: 07.25.2018.

[3] Texas Instruments. 256-Taps Dual-Channel Dig-
ital Potentiometer With Nonvolatile Memory.
url: http://www.ti.com/product/TPL0102-
EP. accessed: 07.26.2018.

[4] Texas Instruments. SIMPLE SWITCHER R© 36-
V, 600-mA Buck Regulator With High-Efficiency
Sleep Mode. url: http : / / www . ti . com /

product / TPS560430 / description. accessed:
07.26.2018.

[5] Texas Instruments. TPS560430 Evaluation Mod-
ule. url: http : / / www . ti . com / lit / ug /

slvub52/slvub52.pdf. accessed: 07.26.2018.

[6] Eli Smertenko. I2C Master Slave Core. url:
https : / / opencores . org / project / i2c _

master_slave. accessed: 07.30.2018.

[7] STMicroelectronics. 128-Kbit serial I2C bus
EEPROM. url: https : / / www . st . com /

resource/en/datasheet/m24128-bf.pdf. ac-
cessed: 07.30.2018.

5

Appendix A Finite State Machine of M24128 Chip Operation
From the Perspective of the Chip

6

Appendix B I2C Master IP Core Finite State Machine

7

