Midterm: Improving Responsivity of the InMind Movie Agent

Through Incremental Processing

Vivian Tsai

Abstract

Carnege Mellon University’s InMind team is cur-
rently working on an intelligent personal assistant
who, through a mobile application, connects socially
with its user while completing a specific task. The
following paper details the current latencies within
this dialog agent’s architecture, as well as an imple-
mented solution, involving incremental processing,
to increase its response time and the effects of this
solution on agent-user interaction.

1 Introduction

The InMind Movie Agent, developed as part of
Carnegie Mellon’s collaborative InMind project, uses
genre, director, and actor preferences to recommend
movies to a user through a mobile application setting.
We define a turn exchange for the agent as a unit
that begins when the user presses the app button
to speak and ends when the movie agent initiates a
reply; one turn exchange thus encompasses the user’s
speech, the processing of that speech and generation
of a response, and the agent’s output of said response.
A conversation between a user and the movie agent
will consist of several turn exchanges.

At present, there exists a significant delay, com-
prised of multiple latencies from different archi-
tectural components, within each turn exchange—
specifically between the end of a user’s utterance
and the start of the dialog agent’s ensuing response.
Our goal is thus to diminish the overall delay by
identifying and eliminating the largest contributors
within this time span.

Possible relevant solutions for eliminating laten-
cies include incremental processing regarding the
dialog agent’s response and speculative execution
regarding partial ASR results. Past research indi-
cates that incremental systems are preferred by users
and rated not only as faster, but also as more efficient
and polite.

In this paper, we examine the results of an in-depth
analysis of latencies within turn exchanges; use those
results to determine which of the mentioned solutions
would prove effective if implemented; discuss the
strategies used to implement these solutions; and

note the impact of these implementations through
the results of a comparative user study. Specifically,
we study how the elimination of identified time delays
through an incremental processing approach alters
interactions between agent and user, as well as the
user’s evaluation of such interactions.

2 Analysis of Latencies

2.1 Overview

We can categorize turn exchanges into two groups:
those which involve queries to the movie database,
and those which do not. The following data are
compiled from 115 turn exchanges, where 42 fall in
the former category; these exchanges were obtained
from conversations between ArticuLab members and
the dialog agent.

Time delays within these turn exchanges were iden-
tifed through the use of an analysis tool, which was
developed to parse conversations, distinguish unique
turn exchanges, and collect various statistics, the
most significant of which are detailed in the follow-
ing section.

2.2 Analysis Tool

The analysis tool utilizes output from log files of
the multiuser framework (MUF') server, phone client,
and NLU/DM, using the timestamps of log messages
to calculate the time spans of various processes.

2.2.1 Structure

Within the analysis tool, the TurnEzchange object,
representing a turn exchange, is comprised of an
enum map; each key is a unique EntryType, and each
value is the LogLine object (containing data from a
specific log line) that corresponds to that key.

An EntryType (enum type) represents a unique
action (corresponding to a log message) that takes
place during a turn exchange (i.e. the social rea-
soner (SR) obtaining a strategy to implement). The
complete set of EntryType variables, as well as their
chronological ordering within a turn exchange, is
detailed in Appendix A.

2.2.2 Calculations

The following statistics are collected by the analysis
tool (and discussed in the Results section).

Timing for Modular Components As the log
messages within logs often indicate the start or end
of processes, the difference between the timestamps
of two specific log messages translates to the duration
of the specific modular process that they encompass.
The TurnExchange function

duration(entryTypel, entryType2)

gives the time in milliseconds between the occur-
rences of entryTypel and entryType2, respectively.
When applied to several TurnExchange objects, the
function ultimately provides a dataset of latencies
(for a particular module) that we can evaluate.

Timing for Speech Results For each TurnEx-
change object, the incremental speech results of
Google ASR are collected chronologically and stored,
with their corresponding timestamps, in a list. This
allows for comparison of partial and full results, as
well as time delays between a specific speech result
and the subsequent final result.

/oM

) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
1 Pointer down -> Google ASR finished W Google ASR finished > MUS sends message 1 Phone > MUF [MUF posting MSG_ASR to Bb.
™ by MUF's NLUDM component > CCC [I MUF -> DialoguePython B NLU i DM
laloguePython -> MUF B Get ed 10 Bb and received by NLG I BEAT
client Il MUF -> phone

Figure 1: Timeline overview of TurnExchanges with queries

2.3 Results
2.3.1 Component Latencies

A timeline overview can be seen in Figure 1. The
resulting statistics show four significant latencies,
where a “significant latency” is defined as one with
a duration over .1000s:

Pointer down to Google ASR output This la-
tency can be ignored, as it measures the delay be-
tween the user’s pressing of the app button and the
Google ASR’s output of that user’s utterance. This

has no correlation with the length of the user’s utter-
ances or duration for which s/he speaks; moreover,
this latency is dependent on the user’s actions only
and is not a result of the InMind architecture.

Time Between Phone_ASROutput, Phone_MUS_SentMessage

Number of TurnExchanges

S0 1,000 LS00 2,000 2500 3000 3,50 4000 4500 5000 550 6000
ime (ms)

Figure 2: Google endpointing delay

Google endpointing The time delay between
Google ASR’s return of a final output and the send-
ing of that output to the multiuser framework. These
results are displayed in histogram form in Figure 2.

Time Between NLUDM_DM, NLUDM_Query

Number of TurnExchanges

50 900 1000 1100 1200 1300 1400 1500 1600 1700 1,800 1,900 2,000 2,100
Time (ms)

Figure 3: Query time for TurnExchanges with queries

NLU/DM Query A movie database query takes
a mean of 1.342s and a median of 1.267s, with a stan-
dard deviation of .2918s. These results are displayed
in histogram form in Figure 3.

Getting social strategy The social reasoner cur-
rently takes a mean of .2164s and a median of .2850s,
with a standard deviation of .1105s. However, as
this latency is quite small compared to that of the
ASR output and that of the movie database query,
there is not an immediate need to make changes. We
propose to re-evaluate this time delay once the larger
ones have been [fixed].

2.3.2 Speech Service Latencies

Our analyses from the previous section do not pro-
vide enough evidence that implementing speculative
execution would be beneficial. Based on incremental
speech results from 114 turn exchanges, the average
delay between the [speech service’s generation of the
correct final result] and the ASR’s finalization of that
result is .4876s, with a standard deviation of .5818s;
note that this yields a coefficient of variation of over
1, and we thus conclude that there is no consistent
delay that could be approached.

Futhermore, Appendix B.2 shows that the delay
between realization of a meaningful, partial ASR
result and realization of the complete ASR result
is neither constant nor significant Out of 55 utter-
ances, only 36 had partial results (that leaves 34.55%
without partial results).

2.4 Proposed Solutions

Based on the aforementioned results, we propose the
following actions in order to reduce time delays and
thus improve functionality:

e Investigate middleware to find cause of
ASR output delay We propose a closer look
at the middleware to better understand the time
delay between the issue of the user’s utterance
and the sending of that utterance to the mul-
tiuser framework, particularly since no action
appears to be taken within this time delay.

e Introduce incremental results within the
InMind architecture Rather than work to re-
duce the duration of a movie database query,
we seek to fold this latency into the InMind
movie agent’s social sentence through incorpo-
rating incrementality. This proposal (including
the concept of folding) will be further explored
in the next section.

We additionally conclude that incorporation of spec-
ulative NLU will not prove beneficial at this time
and will thus not be implemented.

3 Incremental Processing

3.1 Folding Query Time

In terms of the InMind movie agent, a social sen-
tence, underlined in the examples below, refers to
the utterance preceding the agent’s actual question
or movie recommendation to the user:

I like the way you think! Who are your
favorite directors?

Wow, here is one I’d love to go to. It’s
called Oblivion (2013).

I think this movie fits your tastes. How

about Edge of Tomorrow (2014)?

The shortest social sentence (in terms of both au-
dio and word count) that the InMind movie agent
produces—*“I think this movie fits your tastes”—takes
approximately 1712ms (1.712s) for the agent to speak.
This is more than enough time for the 1.342s movie
query time to be folded into the social sentence, where
folding here means having the InMind agent verbal-
ize the social sentence while the movie database is
being queried; recall that the query result is only re-
quired for the agent’s actual recommendation (second
sentence).

Note that for responses without a social sentence,
which are currently of the form “How about [movie
title]?” and only occur when no social strategy is
set, adding a simple phrase like “Let me think for
a moment”, which takes a mean of 1.342s, will still
add sufficient time for folding.

3.2 Overview of Changes

At present, the dialogue manager (DM) handles
queries by outputting a Recommendation object—
which includes the movie to be recommended—once
the movie database has been queried. The social rea-
soner then selects a strategy; the NLG generates an
appropriate response (consisting of a social sentence
and a movie recommendation sentence), filling in the
latter with the movie title from the Recommendation
object; and the NLG response is sent to speech. This
flow of events is represented in Figure 4 below:

text]+text?
{rec(mov),
strat(cs) }

NLU+DM java
"
V)
NLU+DM.py

oV
MOVREC

Figure 4: Current system

We instead propose an incremental approach (Figure
5):

1. The DM outputs the Recommendation object,
which contains an underspecified variable in lieu
of an actual movie title.

2. While the DM queries the movie database for a
movie title, the social reasoner selects a strategy,
and the NLG generates an appropriate response,

(textl, text?
{rec(X),
strat(cs) }

MOVREC

Figure 5: Proposed system

with the social sentence and movie recommen-
dation sentence as two separate entities.

3. As the social sentence contains no variable, the
NLG immediately forwards it to speech.

4. While the social sentence is being spoken by
the InMind movie agent, the DM finishes its
movie query and sends the result to the mul-
tiuser framework; as it is now able to retrieve
a value from the Recommendation object, the
NLG replaces the variable in the movie recom-
mendation sentence with the newly given movie
title. The movie recommendation sentence is
then forwarded to speech.

5. Since a movie query takes less time than the
verbalization of a social sentence, TTS will wait
until the social sentence is finished and then
output the movie recommendation sentence.

3.3 Modular Changes

To implement this incrementality, the following com-
ponents of the InMind system will require modifica-
tions:

NLG Component The NLG component will need
to process the social sentence and recommendation
sentence of an intent separately. The social sentence
can be processed immediately; the recommendation
sentence, containing the variable of a recommended
movie title, must await further information from the

NLU/DM.

DM on Python side If a movie recommendation
is necessary, the DM will need to handle two queries,
the first being the underspecified variable and the
second being the actual movie result.

Text to speech To prevent the InMind movie
agent from interrupting itself once the recommenda-
tion sentence arrives, T'TS needs to be aware of when
the agent has finished speaking and, meanwhile, add
the received recommendation sentence to a queue.

A EntryTypes

A.1 List of EntryTypes

An EntryType represents a unique log message found within a TurnExchange. Each EntryType name
roughly corresponds to LogType_Component_Action.

Phone_TTS Initialized
Phone_Unity_PointerDown
Phone_Unity_ServerStarted
Phone_SpeechService_GettingOutput
Phone_Unity_PointerUp
Phone_ASROutput
Phone_CCC_Message

Phone_ MUS_SentMessage
Phone_SpeechService_ APIComplete
MUF _Orchestrator_ReceivedMessage
MUF _Orchestrator_UtteranceFromASR,
MUF_RE_ReceivedBlackboard
MUF_RE_ReceivedMessage

MUF _NLUDM _ReceivedMessage
MUF_NLUDM _SentGreeting
MUF_NLUDM _ToBlackboard
NLUDM_ASR

NLUDM_NLU

NLUDM_DM

NLUDM_Query

MUF_NLUDM _ReceivedAction
MUF_SR_SetStrategy
MUF_NLG_ReceivedStrategy
MUF_NLG_ToBlackboard

MUPF _Orchestrator_ToClient
MUF_NLG_BSONToAndroid

MUF _NLG_Sentence
Phone_CCC_Request
Phone_MultiuserEvent_Request
Phone_MessageToUnity
Phone_Unity_MessageFromAndroid

A.2 EntryType Timelines

Tables 1 and 2 below show the chronology of log messages for initial turn exchanges and subsequent turn
exchanges, respectively.

Table 1: Chronological timeline of log messages, first exchange

Phone log MUF log MUF /DM log

TTS_ Initialized

Unity_ServerStarted
Orchestrator_ReceivedMessage
MUF _Orchestrator_-UtteranceFromASR
NLUDM_ReceivedMessage
NLUDM_ToBlackboard
NLUDM_SentGreeting

NLUDM_ReceivedAction
SR_SetStrategy
NLG_ReceivedStrategy
NLG_ToBlackboard
Orchestrator_ToClient
NLG_BSONToAndroid
NLG_Sentence

CCC_Request

MultiuserEvent_Request

MessageToUnity

Table 2: Chronological timeline of log messages, subsequent exchanges

Phone log MUF log MUF /DM log

Unity_PointerDown
SpeechService_GettingOutput
Unity_PointerUp
ASROutput
CCC_Message
MUS_SentMessage
Orchestrator_ReceivedMessage
MUPF _Orchestrator_UtteranceFromASR
RE_ReceivedBlackboard
RE_ReceivedMessage
NLUDM_ReceivedMessage
NLUDM_ToBlackboard
ASR
NLU
DM
Query
NLUDM _ReceivedAction
SR_SetStrategy
NLG_ReceivedStrategy
NLG_ToBlackboard
Orchestrator-ToClient
NLG_BSONToAndroid
NLG_Sentence
CCC_Request
MultiuserEvent_Request
MessageToUnity

A.3 EntryTypePairs

The following section lists the EntryTypePairs currently considered by the analysis tool (for pie chart and
timeline graphics), along with explanations of the processes each EntryTypePair represents.

Phone_Unity _PointerDown, Phone_Unity_PointerUp The duration for which the user holds down
the button in the InMind movie agent app. It is important to note that this duration does not correlate to

the user’s utterance in any way and is not a result of the InMind architecture.

Phone_Unity PointerUp, Phone_ ASROutput The time between the user’s release of the app button
and Google ASR’s output of the user’s utterance.

Phone_ASROutput, Phone MUS_SentMessage The time between Google ASR’s output and the

multiuser service’s sending of that output.

Phone_ MUS _SentMessage, MUF _Orchestrator_ReceivedMessage Time it takes for the message to
travel from phone to multiuser framework.

MUF _Orchestrator_ReceivedMessage, MUF _Orchestrator_UtteranceFromASR Time it takes for
the orchestrator to post MSG_ASR (the message sent from the phone) to the blackboard.

MUF _Orchestrator_UtteranceFromASR, MUF_NLUDM _ReceivedMessage Time it takes for the
NLU/DM component to receive MSG_ASR from the blackboard.

MUF_NLUDM _ReceivedMessage, MUF_NLUDM ToBlackboard Time betwen the NLU/DM
component receiving MSG_ASR and the client communication controller beginning to send MSG-ASR (to
DialoguePython).

MUF_NLUDM ToBlackboard, NLUDM_ASR Time it takes for MSG_ASR to travel from multiuser
framework to NLU/DM.

NLUDM_ASR, NLUDM NLU Time it takes for NLU/DM to convert ASR into a user intent; in other
words, the duration of NLU.

NLUDM_NLU, NLUDM_DM Time it takes for NLU/DM to decide on action intent based on user
intent; in other words, the duration of dialogue manager.

NLUDM_DM, NLUDM _Query Time it takes for movie recommendation to be queried from the movie
database (query time).

NLUDM_Query, MUF_NLUDM _ReceivedAction Time it takes for action intent (with query result, if
applicable) to travel from NLU/DM to multiuser framework.

MUF_NLUDM ReceivedAction, MUF _SR_SetStrategy Time it takes for social reasoner to select
strategy (stored as MSG_SR) based on MSG_DM (the action intent); in other words, the duration of SR.

MUF _SR SetStrategy, MUF_NLG_ReceivedStrategy Time it takes for NLG component to receive
MSG_SR from the blackboard.

MUF_NLG_ReceivedStrategy, MUF _NLG _Sentence Time it takes for BEAT to process the NLG
sentence (generated using MSG_SR).

MUF_NLG_Sentence, MUF _Orchestrator_ToClient Time between the end of the BEAT process and
its output (stored as MSG_NLG) being sent to the phone.

MUF _Orchestrator_ToClient, Phone_CCC_Request Time it takes for response (MSG_NLG) to travel
from multiuser framework to phone.

Phone_CCC_Request, Phone MultiuserEvent_Request Time between the client communication
controller receiving the response and the multiuser event receiving the response.

Phone_MultiuserEvent_Request, Phone_MessageToUnity Time between the multiuser event
receiving the response and the phone sending the message to Unity.

Phone_MessageToUnity, Phone_Unity_MessageFromAndroid Time between the phone sending the
message to Unity and the start of the movie agent’s response.

A.4 EntryTypePair Latencies
Pointer down to Google ASR output n: 42 min: 1960.0 max: 4940.0 mean: 2777.6190476190477 std dev:
752.6337804226018 median: 2425.0 skewness: 1.3381366163783324 kurtosis: 1.0584566345601547

Google endpointing n: 42 min: 160.0 max: 5900.0 mean: 1365.952380952381 std dev: 1350.8372462920183
median: 870.0 skewness: 1.7081486586609236 kurtosis: 2.5627220433963074

NLU/DM Query n: 42 min: 906.0 max: 2080.0 mean: 1342.357142857143 std dev: 291.7670990185261 median:
1267.0 skewness: 0.5813324047470905 kurtosis: -0.43922731187703157

Social strategy n: 42 min: 62.0 max: 333.0 mean: 216.4047619047619 std dev: 110.529779570454 median: 285.0
skewness: -0.47936878627777624 kurtosis: -1.7684598079312068

B Incremental Speech Results

B.1 Speech Service Latencies

n: 114 min: 0.0 max: 2170.0 mean: 487.6315789473685 std dev: 581.7828908547331 median: 80.0 skewness:
1.0273836716847586 kurtosis: 0.4274462709804938

B.2 Incremental Speech Result Times

Table 3 shows the results, where “timespan” refers to the elapsed time between the partial result and the full result.

B.3 More Incremental Things
Also, this will be a.

041°00:00:00
0§2°00:00:00
000°00:00:00
091°10:00:00
000°00:00:00
0T2°00:00:00
000°00:00:00
0€4°00:00:00
012 10:00:00
060°10:00:00
000°00:00:00
0€2°00:00:00
092°00:00:00
09¢°00:00:00
0%0°€0:00:00
O0TT"T0:00:00
050°€0:00:00
09G°10:00:00
000°00:00:00
085°10:00:00
0Z¥°10:00:00
02€°€0:00:00
000°00:00:00
0€1°00:00:00
0%¥°00:00:00
042°00:00:00
000°00:00:00
000°00:00:00
000°00:00:00
000°00:00:00
000°00:00:00
0€4°00:00:00
09€°00:00:00
0%¢°00:00:00
000°00:00:00
000°00:00:00
09%°00:00:00
08¢°00:00:00
007°10:00:00
000°00:00:00
0TS 10:00:00
000°00:00:00
000°00:00:00
088°00:00:00
000°00:00:00
092°10:00:00
09¢°10:00:00
000°00:00:00
0€0°00:00:00
0€9°20:00:00
000°00:00:00
0%0°10:00:00
000°00:00:00
061°00:00:00
046°00:00:00

8LLEV:GOTT
878°9€:G0 1T
GI8'T1T:¢C 9T
GE6°LT:9T:9T
G91°80:91:91
GTC 10°9T:91
GELGG:GT 9T
G0Z 0% 1701
Ge1'8C 1v 01
SP8°0T:1¥:01
G19°65:07:01
G12'2S:07:01
GTL TV:07:01
G0L 976201
GLG'€E6C:01
G0€'T1:62°0T
7Y€ 6€:80:61
VIL70:L0°6T
700'v1:¢0:61
787929581
760°C0:9G:81
72T 62:90:91
7T 6v:v0:91
VIV 6E:70:91
VIS TC:LG:GT
768°L0:LG:GT
V6V Cv99:GT
7¥8'9€:99:G1
761°0€:99:G1
726029561
709 V1:99:G1
770°690:99:GT
70L°92:99:G1
¥8C'G1:9G:G1
749C70:99:GT
78€°9G9:VG:GT
VGe 8y ¥aiaT
VLE6VCT VL
VaeLevevivl
VeV VO CTVT
76L°0€:6T:GT
799 70:6T:GT
TYe99:8T:G1
V49T ev8T:G1
792628161
79T 61:8T:GT
PET'€0:8T:GT
V8L 8Y:LT:GT
VIE€CLT:GT
VT T LT:GT
V6T VI LT:GT
796 vC:0€ V1
788 T1:0€: V1
V€T T10:0€: 71
VVL TS6TTV1

8T9°€¥:G0 1T
8CL9€:G0°TT
G60°0T:Cg 9T
GE€6°LT9T:9T
G89°L0:9T:91
GOT'TO:9T:9T
G86°€G:GT 9T
G0C 0¥:1¥7:0T
GC0'8C 101
G8E0T:TI¥:01
G20°64:07:0T
G60°2S:07:01
G0€ T¥:07:01
G0L"G¥:62°01
GLG€E6C:0T
GL8°0T:6¢:0T
VET 6€:80°6T
YIL70:L0°61
¥6¢°¢1:¢061
¥¥0°9C:G9:81
VE€L T0:GS8T
Y2t 6C:90°91
VIL'8Y:70:91
VIV 6€:70:91
V16 1C:LGGT
V68°L0:LG:GT
VC1ey:99:G91
VeV 9€:99:GT
Y19°6C:99:GT
¥19°0C:99:GT
V8T V1:99:GT
¥68°70:99:GT
¥0L'9C GG GT
VT10°GT:6G:GT
¥C9°€0:9G:GT
V6674979 GT
YGe 8V vaiaT
VIC 6V:evvl
Y9 evievivl
¥99°¢0:Cvv1
V6L°0€:6T:GT
¥98°C0:6T-GT
VE€8°GG:8T GT
Yy 1v:81:G1
VT8 LT8TGT
V9T 6T:8T:GT
Y16°00:8T:GT
V€99V LT GT
VIE€ELTGT
YV9 1T LT GT
¥86°0T:LT:GT
VIL'€T0E VI
Y6E 1T1:0€ V1
VET'10:0€ VT
YvEe TS6C V1

synsax [[nJ ‘rerjaed usemiloeq awilJ,

Aue aaey 9,U0p | 8V6°€V G0 TT oARY J.UOp [

Lue saey 3,uop | 860°LE:G0TT oART juop I

sorAOw WOTOe NI T TH GI8'TT:CT: 9T e/u

2UO Jer[) Ueds Apeale A J G60°6T:9T:9T Apeaife oA]

9sINID WO, 9¥I] T G91'80:91T:91 e/u

Aue saey 3,uop | GeV'10°91:91 aARY juop I

sorAOwW UOTOR NI T TH GEL'GSGT 9T e/u

yereg nok yueyg, GEL OV TV:0T AueyL

2UO Jer[) Ueds Apeaie A J G9E'6T: 10T Apeaife oA]

auo Ioyjour 1s033ns NoAk ue) Ge6 1T I7:01 1s0838ns nok ue)

OSIMID WO, oY1] I 819'6S:07:0T '/u

Aue oaey 3,uop | SYy'ce:0v01 aAeT j,uop I

SoraOW UoT3oe oM | GL6 TV:07:0T uoryoe oI |

yrleg syueyg, §96°97:6¢:01 AueqL

yeleg NoA yuey)l UOI)RPUSUIUIOIDL POOT © S JeT[) SOX G19°9€:62:0T SO
2uo Iayjour 1s933Ns Nok ue)) GI¥°'C1:62:0T 1s933ns nok ue)

SI109091Ip 99110AR] AU® 9ARY) UOD | ¥6£ 278061 aaer j,uop |

S1010% 9)110AR] AUe 9ARY 9 UOD | ¥.2°90:L0:6T aARY 9 ,UOP T

ueoN 1oydosstayd 700'¥1:¢0°61 e/u

ey} Jeadal nok ue) #90°8%:GG:8T yeadal nok ue))

Lue saey j,uop | V14676099 8T oART juop I

draow Jey ONI[[nok yuey, Y749 Cere0:9T UYL

Mmous 3, uop I Y1 677091 e/u

SOTAOW IOIIOF] ¥7S9°68:70:9T 10110

Yqeles syuey], VG6°1¢:LG ST Aueqr

009 9eT}) UdS A J $91°80:LG:GT uo9s oA]

SYURH WOof, V6V Cv99:GT e/u

uely SO ¥78°9€:9G:GT e/u

moyedy ppur P61 06:95:GT e/u

yereg uoiaydy BvION $26°03:9G:GT uoaydy eION

uoxydy eIoN 709 71:9G:GT e/u

SOTPOUIOD DIJURTIOY ¥.G°G0:9G:GT OTJURWOY

007 Jel) U9ds 94 J 7490°LC 9961 U99s 94 [

1Y) usas Apeal[y $2G'GT1:QG:GT uoas ApeaIly

U0y, 9ZIIeY D) ¥4e'v0:99:GT e/u

oupjuRIR], UBUINY) ¥8€ GG VGGt e/u

SetAoW UonOY ¥00°67:7S ST uonoy

Aue oaeq 9,uop | v599'6v:cvivl oARY J,UOp T

ouou d9ARY | SUON 2R ttadal QUON

osea[d 101107 QUIOS 9UI JATY) IZS A Raa Al ®/u

utmpred 991y SI[1 Uop [ON ¥0€'CE6T ST Huop I ON

UOSSURTO[})9[IeDS JNOqe MO 798 70:6T:GT e /u

ud[[y APOOA ONI[T Yrer9G:8T:GT e/u

SOIPOUWIOD DIIUBUIOL Y] T Ve V8T ST OluRTWOL SN[|

U0 I9YjoUuR oW SAI3 NOA ur)) $92°6C:8T:GT ®/u

193309 yonut s3eyy Sox V160281 ST SOA

pngs pue sdiygseoeds)M oI SIAOW Y-10S & oq LRI\ ¥89'%0:8T:GT arAowW [Y-198 ' 9qARIN
asI) wWoT, yym Surylawos aaey nok o 8L 8 LT QT e /u
S9TAOW IOIIOF] PVEe eeILTIGT 9IAOUWI IOIIOH]

SOIAOW JI0XIOY JO SULI9) Ul Aue 9ARY A[[ead 9, UOp | ¥GL VT LT:GT oAy A[[eal 9, UOp |
SOTAOWI I0IIOT OYI] Yonuwr A1oA wr,] A[9IN[osqe Sox Y62 FI:LT:GT ®/u
as[o Suryjowios 1s983ns NoA ued jeY) UIS Apeal[e 94 ¥00°92:0€: %1 ey} ueas Apealfe 9A,]
SsINID WO, 9¥I] T V88'T11:0€ V1 e/u

Aue sAey 9,U0p | YV 10:0€ %1 aARY 3, UOp |

SorAOW UOTY0e 9] | VIL€G°6C VT uoryoe oI |

X973 Jnsad [[ng | owI} Jnsad [[ng 3%x97 j[nsad [eryred

sewIL, YNsey Yoeadg [ejusmaIoU] ¢ 9[qRT,

aw) j[nsax [eryred

owry 3[nsaux [eryrux

	Introduction
	Analysis of Latencies
	Overview
	Analysis Tool
	Structure
	Calculations

	Results
	Component Latencies
	Speech Service Latencies

	Proposed Solutions

	Incremental Processing
	Folding Query Time
	Overview of Changes
	Modular Changes

	EntryTypes
	List of EntryTypes
	EntryType Timelines
	EntryTypePairs
	EntryTypePair Latencies

	Incremental Speech Results
	Speech Service Latencies
	Incremental Speech Result Times
	More Incremental Things

