
Implementation of the Central Place Foraging
Algorithm With More Realism

Valuable Sheffey
School of Engineering

University of New Mexico
Email: vivieltwixt@gmail.com

Dr. Melanie Moses
School of Engineering

University of New Mexico
Email: melanie.moses@gmail.com

Dr. Matthew Fricke
School of Engineering

University of New Mexico
Email: matthew@fricke.co.uk

Keywords—ARGoS, iAnts, Gazebo, ROS, foraging algorithm,
swarm robotics

I. INTRODUCTION

Effectively collecting dispersed resources and transporting
them to a specific location is a complex task with many
useful applications. This behavior, called foraging, has been
replicated in the central-place foraging algorithm (CPFA) [1]
created by Moses and Hecker to run on robot swarms. CPFA is
an adjustable strategy for foraging in environments of variable
resource distributions, various swarm sizes, and a range of
machine error. It is inspired by desert harvester ants which
use site fidelity and pheromone trails in their foraging strategy.
CPFA was implemented in simulation and in physical robots
by Moses and Hecker in 2015 using ARGoS and iAnt robots.
The researchers were able to to measure the efficiency of the
algorithm in both environments in terms of error tolerance,
flexibility, and scalability.

The use of CPFA in real-world applications requires more
finesse than the abstraction provided by the lab environment of
Moses and Heckers 2015 experiments. For example, in appli-
cations such as space exploration, a robot retrieving a resource
may face the challenge of actually picking up the resource
versus simply scanning it (as was done in the aforementioned
experiment). For this reason, we seek to understand how CPFA
performs on robots within a more complex framework. Under-
standing CPFA performance in more realistic settings can help
us better predict performance in real world applications. This
knowledge can help determine the appropriateness of applying
CPFA to specific situations.

II. BACKGROUND

The previous experiment on which we build our current
research is the experiment in Moses and Hecker 2015, Beyond
Pheromones: Error-Tolerant, Flexible, and Scalable Robot
Swarms. In that experiment, the researchers developed the
foraging algorithm CPFA and modelled localization and tag
detection sensor error. Then, they used a genetic algorithm to
evolve the algorithms parameters for particular experimental
conditions. Finally, they performed simulated and physical
experiments to measure the algorithms efficiency in these
different environments.

A. CPFA algorithm

This foraging algorithm is inspired by desert harvester ants
which use site fidelity and pheromone trails in their foraging
strategy. Site fidelity is the tendency to return to a site where
a resource was found. Pheromone trails are pathways laid by
ants to lead other ants to a site of high density in resources.

B. Sensor Error Modelling

The iAnts had significant sensor error in localization and
tag detection. To produce more realism in the simulation,
the researchers seeked to model this error. They modelled
localization error via linear regression of measurements of
standard deviation error on the rovers’ reported distance from
the central nest. For tag detection, they determined the per-
centage of tags the rovers were able to correctly identify.

C. Genetic Algorithm

A genetic algorithm was used evolve the algorithms pa-
rameters for specific swarm sizes, resource distributions, and
error models. Fitness was measured as foraging efficiency, the
number of resources collected by all rovers per run.

D. Experiment

To measure CPFA performance, the researchers performed
both physical and simulated experiments.

1) Physical: Each experiment ran for 1 hour outdoors on
a 100 m2 concrete surface. The central collection zone was
represented as the area around a beacon. Resources were QR
tags. Resource collection was simulated by rovers scanning a
found tag. Dropping off a resource involved approaching the
beacon and reporting the tags info.

2) Simulation: Simulated experiments were similar to phys-
ical ones. Robots searched a 100 m2 area and each run was
1 simulated hour. The simulations were run with a program
called ARGOs in which the iAnts actual dimensions, travel and
search speeds, and resource detection areas were used. Some
simulations used the error model to replicate sensor errors.

Performance was measured by efficiency (the number of
resources collected by all robots per run) in terms of error
tolerance (ability to adapt to robot error), flexibility (ability to
perform well on distributions the algorithm was not optimized
for), and scalability (ability to increase efficiency as number
of robots increase).



III. METHODS

A. Substitutions

We intended to replicate most of Moses and Heckers work
with an added layer of complexity. We implemented the CPFA
algorithm in ROS. The ARGoS simulator was replaced by
Gazebo. Instead of iAnts we used their upgrade: rovers.

1) ROS: ROS, the Robot Operating System, is an open-
source project to make developing robotics software easier.
A community-driven initiative, ROS lets experts in particular
areas (motion planning, etc.) create and share their packages.
ROS’s emphasis on modularity allows a user to choose which
packages are useful for his/her work. This collaboration im-
proves robotics as a field overall, as users build upon each
others work. The previous experiment had not taken advantage
of these features, so we chose to do so here.

2) Gazebo vs ARGoS: For the purposes of this experiment,
we preferred Gazebo to ARGoS. Compared to the abstraction
model given by ARGoS, Gazebo provides more realism. For
example, Gazebo has more realistic physics. Gazebo also
provides a more nuanced interface, allowing better control over
the simulations. Most importantly however, Gazebo interfaces
with ROS in a way that allows us to use the same ROS code
for both the simulation and the real rovers. This is very useful
in that it prevents us from writing the same code twice.

3) Rovers vs iAnts: Rovers are the upgraded version of
iAnts. Features such as increased robustness, added gripper
functionality, GPS tracking, and the ability to add more
hardware bring these robots closer to what will be their ideal
form in real-world applications.

B. Implementation

To implement CPFA in ROS and Gazebo, we chose to use
code from the Swarmathon challenge as our basis. With this
in mind, we studied in depth the algorithm of Moses and
Hecker’s paper. When we gained adequate understanding, we
reviewed the actual code of their ARGoS implementation.
Using both as a guide, we developed a pseudocode for imple-
menting the algorithm in ROS. We broke down the pseudocode
even further into discrete tasks that could be checked off. We
then peer coded until all the tasks were completed.

Codewise, this meant creating a CPFASearchController
class within the mobility package (package responsible for
rover movement). The highlight of this class was the CPFA
state machine that modelled the state transitions of the al-
gorithm. We also coded a separate class to represent the
pheromones.

We chose to peer code because design decisions had become
so interdependent that it had become unproductive to code
separately due to the constant consulting required.

After this, we debugged to ensure the algorithm ran as
expected. For me personally, the most frustrating bug was
the rovers’ inability to correctly choose a pheromone. That
is, whenever a rover decided to follow a pheromone laid by
another rover, instead of going to the pheromone site, it would
go to its previous target site. I eventually narrowed down the

error to the update function which is called before selecting a
pheromone. This code automatically makes all pheromones
inactive, so the rover has no options to select from. This
explains why the rover exits the pheromone selection function
without changing its previous target site. The update function
appeared to have been implemented exactly as in ARGoS.
In fact, the code was near identical as both were coded in
C++. The only difference was that one used an ARGoS time
function and the other a ROS. I became convinced that this
was the issue and scoured the web for documentation on both
functions so I could compare them. When I finally found
the documentation, it turned out that both functions returned
the same value using the same units. This stumped me as
it meant the code was correct yet it was certainly responsible
for causing all the pheromones to become inactive before they
could be selected.

After taking a break with other tasks, such as Hackathon
preparation, I finally figured it out. The code was implemented
fine. The issue was that we had set the default parameter for
the pheromone decay too high. Just before a rover selects a
pheromone, it updates the pheromones list using the decay
function which (due to the high decay rate) automatically
inactivates all pheromones. With some tweaking, I was able
to reduce the decay rate to a reasonable rate.

Other errors were of similar nature - could be fixed by
changing a default parameter - or straightforward goofs that
we were able to resolve quickly.

As described, we implemented CPFA using ROS on rovers
in Gazebo. We did not reimplement the genetic algorithm.
Parameters for the CPFA were chosen manually, that is,
parameters were selected based on what appeared to work well
for the given environment and swarm size. We also forgoed
sensor-error modelling.

IV. DISCUSSION

The magnitude of this project means that much more work
remains for the current and future REU students. Future
work includes modeling rover sensor error and integrating
it into the simulation, using a genetic algorithm to more
scientifically determine the best parameters for each of the
environments, implementing CPFA on the physical rovers, and
performing experimental runs to determine the effectiveness of
the parameters chosen.

V. ADDENDUM: RSS SWARMATHON HACKATHON

The RSS Swarmathon Hackathon is an 18 hour challenge
in which participants work in teams to code rovers to au-
tonomously collect blocks and return them to a central collect-
ing zone. In addition to CPFA research, my DREU experience
included assisting in Swarmathon Hackathon preparations and
serving as an advisor to participants.

My main role in Hackathon preparation was to participate in
mock hackathons to test the difficulty of the tasks anticipated
for participants. In the first mock hackathon, me and my team
were given very bare bones code. We needed to implement
a lot of missing functionality such as the ability to pick up



blocks, to avoid obstacles well, and to localize. Unlike the
usual Swarmathon competition in which rovers could use GPS,
these rovers would need to localize using info from cameras
that reported rover and resource locations using their tags.
Localization was the hardest part. We were able to get the
rovers to move reliably, to receive and move to a tag location,
and to pick up blocks. We were working on the algorithm for
parceling the tags to each rover, improving obstacle handling,
and fixing bugs in localization when we ran out of time. In the
second hackathon, we had a better idea of how to approach the
challenge. The first mock hackathon had shown that expecting
the teams to implement effective localization in addition to
other tasks was not reasonable in the time allotted. In the
second hackathon we worked from code with localization
already implemented. Unfortunately the code had some errors,
so we spent most of our time working with our mentor to
resolve these issues. Because of this we made progress, but did
not complete all the tasks, though we came close. These mock
hackathons provided our mentors with enough information to
revise and finalize the code for the actual hackathon.

At the actual hackathon, we REU students were designated
as advisors. We rotated about every 1.5 hours between teams.
I was nervous that I wouldn’t know enough to be useful, espe-
cially since I had never participated in the actual Swarmathon
and many of the participants had. However, the experience
I had gained from the mock hackathons and internship in
general allowed me to provide a lot of helpful advice to the
participants. I was able to explain ROS concepts, the general
layout of the code, advice on time management, and more.
Whenever a problem came up that I couldn’t solve, I simply
referred to another mentor for guidance.

Though only one team managed to retrieve any blocks in
the end, all the teams were amazing. Some teams were just
beginning to learn ROS basics at the Hackathon and still made
significant progress. Knowing how challenging their task was,
I was inspired to see how much these students achieved. I am
also inspired by how much I’ve too learned and achieved over
these few months.

ACKNOWLEDGMENT

I would like to thank Moses Biological Computation Labo-
ratory for its guidance and mentorship. Also, special thanks to
Distributed Research Experiences for Undergraduates (DREU)
for making this research possible.

REFERENCES

[1] Hecker, Joshua P., and Melanie E. Moses. ”Beyond pheromones: evolving
error-tolerant, flexible, and scalable ant-inspired robot swarms.” Swarm
Intelligence 9.1 (2015): 43-70.


