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Abstract—Programmers often search for code examples to
learn new APIs. However, there has been little research on the
reliability of online code examples—whether a code example may
lead to unexpected behavior when it is reused verbatim. This
paper presents an empirical study that assesses the reliability of
code snippets appearing in an online Q&A forum, Stack Overflow
via API misuse detection. To reduce manual assessment effort, we
design and implement MAPLE, an API usage mining approach
that extracts patterns from over 7 million GitHub projects and
subsequently reports potential API usage violations in Stack
Overflow posts. MAPLE infers API usage patterns accurately with
80% precision and 91% recall in top 5 patterns.

We analyze 31,801 Stack Overflow posts using MAPLE and
find that over 50% of them have potential API usage violations
that may produce the symptoms of program crashes and resource
leaks. Such API misuse is caused by three main reasons—missing
control constructs, missing or incorrect order of API calls, and
incorrect guard conditions. We observe that recognized posts, even
those accepted as correct answers or upvoted by other program-
mers, are not necessarily more reliable than unrecognized ones
in terms of API misuse. This study demonstrates the prevalence
and severity of API misuse on Stack Overflow and calls for a new
human-in-the-loop approach to enrich and enhance online code
examples in a systematic and structured manner using mined
API usage patterns.

I. INTRODUCTION

Programmers often resort to online code examples during
software development [1, 2]. A case study at Google shows
that developers issue an average of 12 code search queries per
weekday [2]. Online code examples have also been utilized
to facilitate other development activities, e.g, bug fixing [3],
debugging [4], and API documentation [5]–[7].

Previous studies have analyzed the quality of code snippets
appearing in Q&A forums from different perspectives. Both
Subramanian et al. [8] and Yang et al. [9] show that the
majority of code snippets on Stack Overflow are free-standing
program statements that cannot be accepted by compilers. Da-
genais and Robillard [10] find that 89% of APIs mentioned in
online forums cannot be easily resolved due to the ambiguity
of API names. Zhou et al. [11] find that 86 of 200 posts that
are accepted as correct answers still use deprecated APIs but
only 3 of them are acknowledged on Stack Overflow. None of
these studies have investigated the reliability of online code
examples in the sense that following a code example verbatim
may lead to API usage violations in a target application.
Currently, there is no tool support to help developers easily
recognize and repair unreliable code snippets in online Q&A
forums by leveraging API usage patterns mined from massive
code corpora.

This paper aims to assess the reliability of Stack Overflow
posts by contrasting their code snippets against desirable API
usage patterns mined from over 7 million GitHub projects.
Our hypothesis is that commonly recurring API usage from
massive corpora may represent a desirable pattern that a
programmer can use to trust or enhance code snippets on Stack
Overflow.

Existing API usage mining techniques learn from either a
single project [12] or a small code corpus [13]–[20] and do not
scale to the size of millions of software projects. Compared
with the use of such in-house small corpus, mining massive
corpora can provide more confidence to a programmer about
whether to trust an online code example as is. Our goal is
to scale our API usage mining technology to massive corpora
without sacrificing the fidelity and expressiveness of the API
usage representation. To achieve this goal, we first implement
control and data flow analysis on top of Boa’s ultra-large-
scale software mining infrastructure [21], so that we can use
program slicing to ignore irrelevant API calls. Second, we
combine frequent subsequence mining and SMT-based guard
condition mining so that we can retain both the temporal
ordering of related API calls and appropriate guard conditions
for each API call.

MAPLE efficiently searches over 7 million GitHub projects
and retrieves an average of 32,678 code snippets for a given
API within 10 min. Using confirmed patterns from an existing
benchmark [22] and hand-coded patterns based on JavaDoc
documentation as the ground truth, we find that MAPLE
infers API usage patterns from the massive corpora with 80%
precision and 91% recall, when considering top 5 patterns. In
contrast, MAPLE infers patterns with 49% precision and 46%
recall from a small code corpus with 7,988 GitHub projects.
Our results indicate that learning from massive code corpora
can effectively filter API usage patterns pertinent to a few
outlier code snippets and therefore significantly improve the
precision and recall of API usage mining.

Using this data set of API usage patterns found by MAPLE
and further validated by the first author, we study the extent of
API misuse in Stack Overflow posts. More than half of the SO
posts in our study contain API misuse that could produce the
symptoms of program crashes and resource leaks. Such API
misuse is caused by three main reasons—missing control con-
structs, missing or incorrect order of API calls, and incorrect
guard conditions. API misuse appears in 51% of recognized
posts vs. 50% unrecognized posts. Within recognized posts,
we do not observe a strong positive or negative correlation
between the vote scores (i.e., upvotes minus downvotes) and



(a) An example that does not close FileChannel properly

(b) An example that misses exception handling

Fig. 1: Two code examples about how to write data to a file
using FileChannel on Stack Overflow

the number of posts with API usage violations.
This observation indicates that code examples accepted as

correct answers or endorsed by other programmers are not
necessarily more reliable than unrecognized ones. Our study
demonstrates the prevalence and severity of API misuse in
online Q&A posts and calls for a new human-in-the-loop
approach to check and augment online code examples by
leveraging API usage mined from massive corpora.

II. MOTIVATING EXAMPLES

This section motivates our study with a code reuse scenario
using Stack Overflow. Suppose Alice wants to write data to
a file using FileChannel. Alice searches on Stack Overflow
and finds two code examples, as shown in Figure 1.12 Both
examples are accepted as correct answers and also upvoted by
other programmers. However, both of them have potential API
usage violations that may induce unexpected behavior.

The first post in Figure 1a does not call
FileChannel.close to close the channel. If Alice
copies this example to a program that does not heavily access
new file resources, this example may behave properly because
OS will clean up unmanaged file resources eventually after
the program exits. However, if Alice reuses the example in
a long-running program with heavy IO, such lingering file
resources may cause file handle leaks. Since most operating
systems limit the number of opened files, unclosed file
streams can eventually run out of file handle resources. If
Alice uses FileChannel to write a big volume of data,
she may also lose cached data in the underlying file output
stream, if she forgets to flush or close the channel.

Even though the second example in Figure 1b calls
FileChannel.close, it does not handle the potential excep-
tions thrown by FileChannel.write. For example, calling

1http://stackoverflow.com/questions/10065852
2http://stackoverflow.com/questions/10506546

sequence := ε | call ; sequence
| construct { ; sequence ; } ; sequence

call := name(n)@condition

construct := if | else | loop | try | catch | finally
condition := boolean expression

name := characters
n := integer constant

Fig. 2: Grammar of Structured API Call Sequence

this method would throw ClosedChannelException, if the
channel is already closed. If Alice uses FileChannel in a
concurrent program where multiple threads attempt to access
the same channel, AsynchronousCloseException will oc-
cur if one thread closes the channel, while another thread is
still writing data to the channel.

As a novice programmer, Alice cannot easily recognize
such API misuse in these posts. In this case, our approach
MAPLE infers desirable API usage by scanning over 7 mil-
lion GitHub projects and by finding 3,277 Java methods
that also call FileChannel.write. This API usage min-
ing process finds two commonly used patterns. The mostly
frequent usage supported by 1425 code snippets on GitHub
indicates that a method call to FileChannel.write() must
be contained inside a try and catch block. The second most
frequent usage supported by 1245 code snippets on GitHub
indicates that FileChannel.write must be followed by
FileChannel.close. By comparing code snippets in Fig-
ures 1a and 1b against these two API usage patterns, MAPLE
could warn the user the potential risk of using the code snip-
pets verbatim, and suggest her to consider adding a missing
call to close and an exception handling block.

III. PATTERN MINING AND API MISUSE DETECTION

Given an API method of interest, MAPLE takes four phases
to infer desirable API usage from massive corpora and to
flag potential API misuse in code snippets appearing on Stack
Overflow. The first three phases are automated. The last phase
allows a human to inspect the inferred API usage patterns
first before using them to flag potential violations in the Stack
Overflow posts.

In Phase 1, the goal of MAPLE is to extract a sequence of
API calls, including a call to a particular API method of inter-
est and to remove irrelevant statements by leveraging program
slicing. In Phase 2, MAPLE finds a common subsequence from
individual sequences of API calls. In Phase 3, in order to retain
conditions under which each API can be invoked, MAPLE
mines guard conditions associated with individual API calls.
During this process of mining guard conditions, MAPLE uses
a SMT solver, Z3 [23], to check the semantic equivalence
of guard conditions, so that we can accurately estimate the
frequency of each unique guard correctly. In the last Phase
4, MAPLE allows the user to inspect inferred patterns before
constrasting them against code snippets in the Stack Overflow
posts to report potential API misuse.



1 void initInterfaceProperties(String temp, File dDir) {
2 if(!temp.equals("props.txt")) {
3 log.error("Wrong Template.");
4 return;
5 }
6 // load default properties
7 FileInputStream in = new FileInputStream(temp);
8 Properties prop = new Properties();
9 prop.load(in);

10 // init properties
11 prop.set("interface", PROPERTIES.INTERFACE);
12 prop.set("uri", PROPERTIES.URI);
13 prop.set("version", PROPERTIES.VERSION);
14 // write to the property file
15 String fPath=dDir.getAbosulatePath()+"/interface.prop";
16 File file = new File(fPath);
17 if(!file.exists()) {
18 file.createNewFile();
19 }
20 FileOutputStream out = new FileOutputStream(file);
21 prop.store(out, null);
22 in.close();
23 }

Fig. 3: A Java method on GitHub that calls createNewFile.

A. Structured Call Sequence Extraction and Slicing on GitHub

Given an API method of interest, MAPLE searches indi-
vidual code snippets that invoke the same API method in the
GitHub corpora. Specifically, MAPLE scans 7,830,023 Java
projects, collected on September, 2015. To scale code search to
millions of software projects, MAPLE leverages a distributed
software mining infrastructure, Boa [21] to traverse the ab-
stract syntax trees (ASTs) of Java files in GitHub projects.
MAPLE visits every AST method and looks for a method
invocation of the API of interest. Figure 3 shows a code snippet
retrieved from GitHub for the File.createNewFile API.
This example creates a property file if it does not exist by
calling createNewFile (line 18).

To extract the essence of API usage, MAPLE models each
code snippet as a structured call sequence, which abstracts
away certain syntactic details such variable names and types,
but still retains the temporal ordering and guard conditions of
API calls in a compact manner. Figure 2 defines the grammar
of our API usage representation. A structured call sequence
consists of relevant control constructs and API calls, separated
by the delimiter “;”. API calls are annotated with the number
of arguments to distinguish method overloading. Each API call
is associated with a guard condition that protects its usage or
true if it is not guarded by any condition.

MAPLE builds the control flow graph (CFG) of a GitHub
snippet and identifies the enclosing control constructs [24].
The enclosing control construct is related to a given API call
of interest, if there exists a path between the two and the
API call is not post-dominated by the control construct. For
instance, the API call to createNewFile (line 18) is control
dependent on the if statements in lines 2 and 17 in Figure 3.
From each control construct, we lift the contained predicate.
This process is a pre-cursor for mining a guard condition that
protects each API method call. We use the conjunction of the
lifted predicates in all relevant control constructs. If an API

Bound Variables Structured Call Sequence
k=1 file new File; if {; createNewFile; }; new FileOutputStream

k=2
file, fPath,
out

getAbsolutePath; new File; if {; createNewFile; };
new FileOutputStream; store

k=3
file, fPath,
out, prop

new Properties; load; set; set; set; getAbsolutePath; new File;
if {; createNewFile; }; new FileOutputStream; store

k=∞
file, fPath,
out, prop,
in, temp

new FileInputStream; new Properties; load; set; set; set;
getAbsolutePath; new File; if {; createNewFile; };
new FileOutputStream; store; close

No Slicing
file, fPath,
out, prop, in,
temp, log

if {; debug; }; new FileInputStream; getAbsolutePath; load;
set; set; set; new File; if {; createNewFile; }; new Properties;
new FileOutputStream; store; close

TABLE I: Structured call sequences sliced using k bounds.
The guard conditions are omitted for the presentation purpose.

call is in the false branch of a control construct, we negate
the predicate when constructing the guard. In Figure 3, since
createNewFile is in the false branch of the first if statement
at line 2 and the true branch of the second if statement at
line 17, its guard condition is temp.equals("props.txt")
&& !file.exists(). While this approach of lifting control
predicates does not consider the effect of program statements
before an API call via symbolic execution and thus could
produce an imprecise guard condition, MAPLE makes this
choice of sacrificing precision for scalability. Project-specific
predicates and variable names used in the guard conditions
are later generalized in Phase 3 to unify equivalent guard
conditions regardless of project-specific details.

Our insight is that MAPLE should filter any statements that
are not related to the API method of interest. For example, API
calls related to Properties in Figure 3 should be removed,
since they are project-specific and irrelevant to the invocation
of createNewFile. MAPLE performs intra-procedural pro-
gram slicing to retain only data-dependent statements [25].
During this process, MAPLE uses both backward and forward
slicing to identify relevant statements up to k hops. Setting
k to 1 retains only immediately dependent API calls in the
call sequence, while setting k to ∞ includes all transitively
dependent API calls. For instance, the Properties APIs
such as load (line 9) and set (lines 11-13) are transitively
dependent on createNewFile through variables file, out,
and prop. Table I shows the call sequences extracted from
the code snippet in Figure 3 with different k. Setting k to 1
by default leads to best performance and precision empirically
(to be detailed in Section VI).

B. Frequent Subsequence Mining

Given a set of structured call sequences from Phase 1,
MAPLE finds common subsequences using an efficient se-
quence mining algorithm, BIDE [26]. Computing the common
subsequence is widely practiced in the literature of API usage
mining [18, 27]–[29] and this has the benefit of filtering out
API calls pertinent to only a few outlier examples. MAPLE
splits each structured call sequence by the delimiter “;” and
excludes the guard condition of each API call. In other words,
MAPLE considers only the ordering of API calls and inclusion
of relevant control constructs. The task of mining a common



API Call Guard Generalized Symbolized

s.substring(start)
start>=0 &&
start<=s.length()

start>=0 &&
start<=s.length()

arg0>=0 &&
arg0<=rcv.length()

log.substring(index)
-1<index &&
index<log.length()+1

-1<index &&
index<log.length()+1

-1<arg0 &&
arg0<rcv.length()+1

f.substring(
f.indexOf(“/”))

dir != null &&
f.indexOf(“/”)>=0 &&
f.indexOf(“/”)<=f.length()

true &&
f.indexOf(“/”)>=0 &&
f.indexOf(“/”)<=f.length()

true &&
arg0>=0 &&
arg0<=rcv.length()

TABLE II: Example guard conditions of String.substring.
API Call shows three example call sites. Guard shows the
guard condition associated with each call site. Generalized
shows the guard conditions after eliminating project-specific
predicates. Symbolized shows the guard conditions after
symbolizing variable names.

guard condition is done in Phase 3 instead. BIDE mines
frequent closed sequences above a given minimum support
threshold σ. A sequence is a frequent closed sequence, if it
occurs frequently above the given threshold and there is no
super-sequence with the same support. This algorithm is a
good fit to our problem for two reasons. First, it does not need
to keep track of already mined subsequence candidates, which
significantly reduces the space complexity. Second, it does not
mine all frequent patterns but only closed ones, leading to a
more compact set. MAPLE ranks a list of sequence patterns
based on support. MAPLE also filters invalid sequence patterns
that do not follow the grammar in Figure 2, as frequent sub-
sequence mining can find invalid patterns with unbalanced
brackets such as “foo@true; }; }”. The default threshold σ
is set to 0.5, which means frequent subsequences are reported,
only if more than half of relevant code snippets on GitHub
include the subsequence.

C. Guard Condition Mining

Given a common subsequence from Phase 2, MAPLE
mines the common guard condition of each API call in
the sequence. The rationale is that each method call in
the common subsequence may have a guard to ensure that
the constituent API call does not lead to a failure. There-
fore, MAPLE collects all guard conditions from each struc-
tured call sequence from Phase 1 and clusters them based
on their semantic equivalence. The guard conditions ex-
tracted from GitHub code snippets often contain project-
specific predicates and variable names. In Figure 3, the
identified guard condition of createNewFile (line 18)
is temp.equals("props.txt") && !file.exists(). Its
first predicate temp.equals("props.txt") checks whether
a string variable temp contains a specific content. Neither the
variable temp nor the predicate are related to the usage of
createNewFile. Therefore, MAPLE first abstracts away such
syntactic details in individual guard conditions before cluster-
ing them. For each guard condition from Phase 1, MAPLE
substitutes predicates that do not mention the receiver object
or input arguments of the given API call with true. This
ensures that the generalized guard condition is still implied by
the original guard after removing project-specific predicates.
In addition, since each code snippet may use different object

and variable names, we normalize these names in the guard
conditions. MAPLE uses rcv and argi as the symbolic names
of the receiver and the i-th input argument.

Table II illustrates how we derive the guard condition for
String.substring. String.substring takes an integer
index as input and returns a substring that begins from the
given index. The third guard condition in Column Guard
contains a project-specific predicate, dir != null. Since
such predicate is not related to String.substring, MAPLE
substitutes dir != null with true, as shown in Column
Generalized. All three examples name the receiver object dif-
ferently, i.e., s, log, and f. MAPLE unifies them by replacing
with a unique symbol, rcv. Similarly, MAPLE replaces the
input argument with arg0, as shown in Column Symbolized.

MAPLE initializes each cluster with each generalized guard.
In the following clustering process, MAPLE checks the equiv-
alence of every pair of clusters and merges them with if the
guards are logically equivalent, until no more clusters can be
merged. At the end, we count the number of guard conditions
in each cluster as frequency. Since the same logical predicate
can be expressed in multiple ways in different projects, prior
work on predicate mining checks syntactic similarity after
applying rewriting heuristics [30], for example by converting
both arg0<arg1 and arg1>arg0 to arg0<arg1. To over-
come the limitation of relying on syntactic similarity only,
MAPLE formalizes the equivalence of two guard conditions
as a satisfiability problem:

p⇔ q is valid iff. ¬((¬p ∨ q) ∧ (p ∨ ¬q)) is unsatisfiable.

MAPLE uses a SMT solver, Z3 [23] to check the log-
ical equivalence between two guards during the merging
process. As Z3 only supports primitive types, MAPLE de-
clares variables of unsupported data types as integer vari-
ables and substitute constants such as null with integers
in Z3 queries. In addition, MAPLE substitutes API calls
in a predicate to symbolic variables based on their re-
turn types. Compared with prior work, MAPLE is capable
of proving the semantic equivalence of arbitrary predicates
regardless of their syntactic similarity. For example, the
symbolized guards of the first two examples in Table II
are equivalent, even though they are expressed in different
ways, -1<arg0 && arg0<rcv.length()+1 and 0<=arg0

&& arg0<=rcv.length() respectively. Prior work [30] can-
not reason about the equivalence between -1<arg0 and
0<=arg0. However, MAPLE groups these predicates into the
same cluster using the integer theorem prover in Z3.

Similar to the subsequence mining in Phase 2, MAPLE
also requires users to specify a minimum support threshold
θ to filter infrequent guard conditions. The default threshold
θ is set to 0.5 to mine a guard condition supported by at
least half of code snippets using the given API. MAPLE
then composes the desired API usage by augmenting the
common subsequence with a common guard condition for
each call. MAPLE enumerates all combinations, if a sequence
pattern contains multiple API calls and each API call could
be protected by multiple guard patterns. The composed API



usage patterns are ranked by the number of code examples
that support each pattern in the corpora.

D. API Misuse Detection

MAPLE may learn patterns of no interest for two reasons.
First, shorter patterns with fewer API calls are often supported
by more examples. Therefore, MAPLE may rank incomplete
patterns higher than complete ones. Second, if desirable API
usage occurs infrequently on GitHub, MAPLE may not easily
infer the correct pattern. For instance, PrintWriter.close
should be called in finally to ensure that the buffered
contents are written to the stream in case an exception occurs
in the middle of execution. However, among all code snip-
pets calling PrintWriter.close on GitHub, only 17% call
close in finally. As a result, this pattern is ranked #14
in all inferred patterns of PrintWriter.close. Therefore,
MAPLE allows users to inspect inferred patterns to reduce
mis-identified API usage violations, before comparing them
against code snippets in Stack Overflow posts.

When multiple patterns are inferred, MAPLE also allows
users to annotate each pattern as either alternative or required.
A code snippet should satisfy one of the alternative pattern,
and must satisfy all required patterns. For example, program-
mers can check file existence before creating a new file by
either calling File.exists or checking the return value of
File.createNewFile, which are considered as alternative
patterns. Programmers must handle potential IOException

when reading from a stream and also close the stream at the
end to avoid resource leaks, which are considered as required
patterns.

Given a human-annotated pattern, MAPLE checks whether
the structured call sequence of a Stack Overflow snippet is
subsumed by the pattern. A structured call sequence s is
subsumed by a pattern p, only if p is a subsequence of s and
the guard condition of each API call in s implies the guard
of the corresponding API call in p. During this subsumption
checking process, the guard conditions in Stack Overflow code
snippets are generalized in the same manner before checking
logical implication using Z3.

IV. PATTERN MINING EVALUATION

This section investigates whether MAPLE is capable of
mining API usage patterns efficiently and accurately on mas-
sive code corpora. Our study uses 30 Java and Android API
methods selected from an existing API misuse benchmark,
MUBENCH [22]. The benchmark includes API misuse from
existing bug datasets [31]–[33], previous literature [3, 34], and
API misuse reported by professional developers. We exclude
APIs that have no references on Stack Overflow and those with
project-specific misuse related to the logic of a client program.
In Table III, API shows individual API methods in our
study. API misuse description describes the particular misuse
studied by MUBENCH, and API Usage Patterns shows the
ground-truth patterns confirmed by MUBENCH and further
augmented by the first author based on the corresponding
JavaDoc documentation.

Setting
Precision (%) Recall (%)

Rank
Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

Small Corpus 49 49 49 42 46 53 6

Massive Corpora 79 80 79 85 91 94 3

TABLE IV: Pattern Mining Accuracy Comparison

MAPLE learns not only confirmed patterns in MUBENCH
but also additional patterns consistent with JavaDoc documen-
tation. For instance, TypedArray is allocated from a static
pool to store the layout attributes, whenever a new application
view is created in Android. The corresponding pattern in
MUBENCH checks for missing exception handling, when
retrieving attributes from TypedArray with invalid indices,
which is confirmed on GitHub.3 From another perspective,
TypedArray should be recycled immediately to avoid re-
source leaks and GC overhead, as mentioned in the JavaDoc.4

This pattern is supported by 2,206 code snippets in GitHub
and inferred by MAPLE (ranked #1).

A. Scalability

MAPLE scans over 7 million GitHub projects and finds an
average of 32,678 relevant code snippets for each API method,
ranging from 376 to 294,569 snippets. This result indicates
that massive code corpora can provide sufficient code snippets
to learn patterns from. On average, MAPLE takes around 10
minutes to search over the massive corpora and find relevant
GitHub code snippets for each API. Data dependence-based
slicing does not impose much overhead during code search.

To demonstrate that MAPLE scales to a large number of
code examples, we repeat existing GitHub snippets to create a
dataset with 100k code snippets for each API method and run
MAPLE on these datasets using the default setting (k=1, σ=0.5,
θ=0.5). The experiments are run on a single machine with
2.93GHz dual core processor and 8GB DDR3 RAM. We run
MAPLE on each dataset of each API five times and compute
the average execution time. On average, MAPLE’s pattern
inference takes about 4 minutes using the default setting. The
sensitivity analysis using different dependency bounds and
pattern mining thresholds is detailed in Section VI.

B. Accuracy

Table IV shows the precision and recall of inferred patterns
with respect to the ground-truth patterns in Column API
Usage patterns in Table III. MAPLE is capable of learning
expected patterns for all 30 APIs from massive code corpora
with 80% precision and 91% recall when considering top 5
patterns for each API method. As we inspect top 10 patterns
for each API method, the recall increases gradually to 94%,
while the precision does not vary much. To demonstrate the
benefit of mining massive code corpora, we apply MAPLE to
a small code corpus that contains 7,899 randomly selected
GitHub projects only. MAPLE learns expected patterns for 19

3https://github.com/chrisjenx/Calligraphy/issues/41
4https://developer.android.com/reference/android/content/res/TypedArray.

html



ID API Name API Misuse Description API Usage Patterns Severity Total Unreliable

1 File.createNewFile The file may exist before creating it.
createNewFile(0)@!rcv.exists() 3

mkdirs(0)@true; createNewFile(0)@true 3

createNewFile(0)@true; if {; } ∗
other 848 337

2 Iterator.next NoSuchElementException is thrown if no more elements exist. next(0)@rcv.hasNext() 3 crash 4536 447

3 HashMap.get A null pointer is returned if no such key exists.
get(1)@true; if{; } 3

get(1)@rcv.containsKey(arg0) ∗
get(1)@rcv!=null ∗

crash 970 733

4 File.mkdirs call mkdir, which does not create nonexistent parent directories. mkdirs(0)@true 3 crash 797 4
5 Cipher.init init may throw InvalidKeyException. try {; init(2)@true; }; catch {; } 3 crash 329 113

6 InputStream.read InputStream is not closed.
read(1)@true; close(0)@true 3

try{; read(1)@true; }; catch {; } ∗
res leak
/ crash

335 198

7 StringTokenizer.nextToken NoSuchElementException is thrown if no more tokens exist. nextToken(0)@rcv.hasMoreTokens() 3 crash 729 238
8 DataOutputStream.write DataOutputStream is not closed. write(1)@true; close(0)@true 3 res leak 112 62

9 SortedMap.firstKey NoSuchElementException is thrown if the map is empty.
firstKey(0)@!(rcv==null||rcv.isEmpty()) 3

firstKey(0)@rcv.size()>0 ∗
crash 22 21

10 ApplicationInfo.loadIcon OutOfMemoryError is thrown when icons are large. try {; loadIcon(1)@true; }; catch {; } 3 crash 16 16

11 TypedArray.getString IndexOutOfBoundsException is thrown if the index is not valid.
try {; getString(1)@true }; catch {; } 3

getString(1)@true; recycle(0)@true ∗
crash 15 15

12 RandomFileAccess.close close can be skipped.
finally {; close(0)@true; } 3

try {; close(0)@true; }; catch {; } ∗
if {; close(0)@rcv!=null; } ∗

res leak
/ crash

141 131

13 RandomFileAccess.read RandomFileAccess is not closed after reading.
read(1)@true; close(0)@true 3

try {; read(1)@true; }; catch {; } ∗
read(1)@true; if {; } ∗

res leak
/ crash

34 22

14 RandomFileAccess.write RandomFileAccess is not closed after writing.
write(1)@true; close(0)@true 3

try {; write(1)@true; }; catch {; } ∗
res leak
/ crash

47 21

15 Activity.setContentView Throw exceptions if calling setContentView before super.onCreate super.onCreate(1)@true; setContentView(1)@true 3 crash 4425 35
16 Activity.findViewById Return null if no such view exists. findViewById(1)@true; if {; }3 crash 27 24

17 PrintWriter.close close can be skipped.
finally {; close(0)@true; } 3

try {; close(0)@true; }; catch {; } ∗
if {; close(0)@rcv!=null; } ∗

res leak
/ crash

745 536

18 PrintWriter.write PrinterWriter is not closed after writing.
write(1)@true; close(0)@true 3

try {; write(1)@true; }; catch {; } ∗
write(1)@true; flush(0)@true ∗

res leak
/ crash

215 117

19 new FileInputStream Throw FileNotFoundException if the file does not exist.
new FileInputStream(1)@arg0.exists() 3

try {; new FileInputStream(1)@true; }; catch {; } ∗
crash 6101 2788

20
ByteBuffer.put
ByteBuffer.getInt

Previous data is not read properly without flipping the buffer.
put(1)@true; flip(0)@true; getInt(0)@true 3

put(1)@true; rewind(0)@true; getInt(0)@true ∗
put(1)@true; position(1)@true; getInt(0)@true ∗

crash 11 4

21 FileChannel.write The written content is not flushed before the next read
write(1)@true; close(0)@true 3

try {; write(1)@true; }; catch {; } ∗
res leak
/ crash

38 21

22 ArrayList.get Throw IndexOutOfBoundsException if the index exceeds the limit. get(1)@arg0<rcv.size() 3 crash 2150 1328

23 JFrame.setPreferredSize The preferred size is never reflected without calling pack.
setPreferredSize(1)@true; pack(0)@true 3

setPreferredSize(1)@true; setVisible(1)@true ∗
other 138 19

24 JsonElement.getAsString Throw ClassCastException if the element is not valid.
getAsString(0)@rcv.isJsonPrimitive() ∗
getAsString(0)@rcv!=null ∗

crash 58 58

25 ProgressDialog.dismiss Throw IllegalArgumentException if the dialog is not showing.
dismiss(0)@rcv.isShowing() 3

dismiss(0)@rcv!=null ∗
crash 193 179

26 SQLiteDatabase.query The cursor returned by query is not closed.
query(7)@true; close(0)@true 3

query(7)@true; if {; } ∗
crash 48 33

27 String.getBytes String is not encoded correctly without specifying the desired charset. getBytes(1)@true 3 other 2416 1415

28
String.getBytes
Mac.doFinal

MAC does not operate properly with incorrectly encoded bytes.
getBytes(1)@true; doFinal(1)@true 3

try {; getBytes(0)@true; doFinal(1)@true; }; catch {; } ∗
other 30 19

29 Mac.doFinal, new String The MAC result is not converted correctly without specifying the charset.

doFinal(1)@true; encode(1)@true; new String(1)@true 3

doFinal(1)@true; encodeBase64(1)@true; new String(1)@true∗
doFinal(1)@true; new String(2)@true ∗
try {, doFinal(1)@true, new String(1)@true, }; catch {; } ∗
init(2)@true, doFinal(1)@true, new String(1)@true ∗

other 282 249

30 new SimpleDateFormat Date is not displayed correctly without specifying the locale. new SimpleDateFormat(2)@true 3 other 8163 7149

TABLE III: Pattern mining and API misuse detection benchmark. Patterns annotated with 3 are confirmed by prior work [22]
while patterns annotated with ∗ are validated by the authors based on JavaDoc.

of 30 APIs from the small corpus with 49% precision and
46% recall in top 5 patterns. The average rank of expected
patterns is 6 when using the small corpus vs. 3 when using the
massive corpora, indicating using massive corpora does indeed
provide the benefit of placing good patterns on the top. MAPLE
learns patterns with low accuracy and ranking in the small
corpus for three reasons. In 3 cases, MAPLE does not find
any relevant snippets in the small corpus. In 6 cases, MAPLE
finds several snippets but none of them contain correct API
usage. In 2 cases, MAPLE finds some snippets but the correct
usage occurs infrequently. Unless there is an efficient way

of creating a corpus of high-quality code examples, mining
massive corpora rather than a pre-defined corpus is necessary
for inferring correct API usage patterns for arbitrary APIs.

V. API MISUSE STUDY ON STACK OVERFLOW

To assess the reliability of code snippets included in Stack
Overflow posts, we use the set of patterns inferred by MAPLE
and further validated by the first author to detect API misuse
in Stack Overflow posts.



A. Data Collection

We collect all posts relevant to the 30 APIs in Table III from
the Stack Overflow data dump.5 We first extract code snippets
in the markdown <code> from SO posts with the Java tag.
We only include code snippets in answer posts, since code
in question posts is buggy and rarely used as examples. We
also gather additional information associated with each post,
including view counts, scores (i.e., upvotes minus downvotes),
and whether a post is accepted as the correct answer.

For each API in the benchmark, we parse Stack Overflow
snippets using a customized Java parser for partial programs
and only retain those examples that call the API method under
focus. Our parser wraps an arbitrary snippet with mocked class
and method headers as needed and resolves types and API calls
with an API oracle extracted from JDK and Android SDK [35].
Code examples that call overridden APIs or ambiguous APIs
(i.e., APIs with the same name but from different Java classes)
are filtered by checking the argument types and receiver types
respectively. In total, we find 31,801 SO posts with code
examples for the 30 APIs in our benchmark. Each post has
10,890 view counts on average. Column Total in Table III
shows the number of posts for individual APIs. Please note
that one post may reference multiple APIs in our benchmark.

B. Is API Misuse Prevalent on Stack Overflow?

We detect API misuse in 16,098 (51%) out of 31,801
Stack Overflow posts in our study. Column Unreliable shows
the number of posts with API misuse for individual APIs.
Figure 4 compares APIs from different domains. Many ex-
amples misuse Android APIs due to undocumented behavior
or contracts [36]. Cryptography APIs are also often misused
on Stack Overflow, which is consistent with the previous ob-
servation that programmers often struggle with cryptography
APIs [34, 37]. Among posts with potential API misuses re-
ported by MAPLE, 37% include the types of API violation that
could throw unexpected exceptions, 7% could lead to handle
leaks in operating systems, 12% could lead to corrupt data
(e.g., incorrectly encoded bytes), and 44% could potentially
cause representation issues (e.g., ill-formed dates), according
to our inspection of the differences between the embedded
code snippets and the desired API usage. To support our
argument that these API usage violations could indeed induce
real-world bugs, we publish bug reports and commits that
report the corresponding API usage violations in GitHub and
SourceForge.6

We fully acknowledge that not all API usage violations
could lead to bugs in client applications. There are two
reasons. First, a client program can be resilient to an API
usage violation. For example, if NoSuchElementException
is caught and handled properly by the caller, Iterator.next
(#2 in Table III) will not crash a program, even though no more
elements exist. Second, an API is used in a specific context

5https://archive.org/details/stackexchange, accessed on Oct 17, 2016.
6The link to our repository is removed for double-blind review. We will

release the tool and dataset, once the paper is accepted.
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Fig. 4: API Misuse Comparison between Different Domains

where the error-inducing condition never occurs. For example,
if File.createNewFile (#1 in Table III) creates a file that
is guaranteed non-existent in a target client program, this op-
eration will always succeed. Please note that reasoning about
such cases requires deep understanding about the semantics of
a client program. To more accurately assess the runtime impact
of code examples, this study can be extended by systematically
integrating SO code snippets to real-world client applications
and running them via regression testing.

C. What are the characteristics of API misuse?

We classify the detected API misuses into four categories
based on the required edits to correct an API misuse to follow
the corresponding usage pattern.
Missing Control Constructs. Many APIs should be used in
a specific control-flow context to avoid unexpected behavior.
This type of API misuses can be further split based on the
type of missing control constructs.

Missing exception handling. If an API may throw an ex-
ception, the thrown exception should either be caught and
handled a try-catch block or be declared in the method
header. In total, we find 2,985 code examples that do not
handle exceptions properly.

Missing finally. Clean-up APIs such as close should be
invoked in a finally block in case an exception occurs before
invoking those APIs. For instance, br.close in Figure 1b
can be skipped if FileNotFoundException is thrown by
new FileReader, leading to unmanaged file resources. Most
examples (83%) of clean-up APIs (#12 and 17 in Table III)
do not include a finally block.

Missing if checks. Some APIs may return erroneous values
such as null pointers, which must be checked properly to avoid
crashing the succeeding execution. Invoking get will return
null, if the requested key does not exist in the map (line 10).7

Since null cannot be returned as a double value, the example
will throw NullPointerException at line 10. 1,077 code
examples do not check the return value of an API call properly
on Stack Overflow.

1 public class Loan {
2 private static HashMap<Integer,Double> rate = new

HashMap<Integer,Double>();

7http://stackoverflow.com/questions/29689729



3 Loan()
4 {
5 rate.put(15, 3.25);
6 rate.put(30, 3.95);
7 }
8 public double getRate(int year) {
9 //Now you can get the desired rate

10 return
::::::::::::
rate.get(year);

11 }
12 }

Missing or Incorrect Order of API calls. In certain cases,
multiple APIs should be called together in a specific order
to achieve desired functionality. Missing or incorrect order of
such API calls can lead to unexpected behavior. For example,
developers must call flip, rewind, or position to reset the
internal cursor of ByteBuffer back to the previous position
to read the buffered data properly. However, the following
example will throw BufferUnderflowException because
the cursor has already reached the upper bound of the buffer
after the write operation at line 2.8 Without resetting the cursor,
the next read operation at line 3 will start reading from the
upper bound, which is prohibited. We find 580 Stack Overflow
posts that miss at least one critical API call on Stack Overflow.

1 ByteBuffer bb = ByteBuffer.allocate(4);
2 bb.put(newArgb);
3 int i =

:::::::::
bb.getInt();

As another example, super.onCreate must be invoked
first to initialize the Android app correctly. However, 35 posts
include code snippets invoking Activity.setContentView

(#15 in Table III), leading to NullPointerException be-
cause the layout objects are not initialized yet. We find 129
posts that call APIs in an incorrect order.
Incorrect Guard Conditions. Many APIs should be in-
voked under the correct guard condition to avoid runtime
exceptions. For instance, programmers should check whether
a sorted map is empty with a guard like map.size()>0

or !map.isEmpty() before calling firstKey (API#9)
on the map. However, the following example calls
firstKey on an empty map without a guard, leading to
NoSuchElementException.9 Surprisingly, this example is
accepted as the correct answer and also upvoted by six other
developers on Stack Overflow. We find 5,488 posts calling
APIs with incorrect guard conditions.

1 TreeMap map = new TreeMap();
2 //OR SortedMap map = new TreeMap()
3

::::::::::::
map.firstKey();

D. Are recognized code examples more reliable?

67% of the studied posts are either accepted as correct an-
swers or have more upvotes than downvotes. Such recognized
posts are often considered to have higher quality than un-
recognized ones. Previous study has shown that programmers
often pay more attention to accepted answers [38]. However,
we observe that recognized posts have as many API usage
violations as unrecognized ones. Overall, 51% of recognized

8http://stackoverflow.com/questions/12100651
9http://stackoverflow.com/questions/21983867

posts have API misuse, while 50% of unrecognized posts have
API misuse. Figure 5 shows that the median percentage of
posts with API misuse does not have much difference between
recognized posts and unrecognized posts.
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Fig. 5: API Misuse Comparison between Recognized and
Unrecognized Examples on Stack Overflow

Each post on Stack Overflow is assigned a score (i.e.,
upvotes minus downvotes). The average score of recognized
posts in our dataset is 5, indicating endorsement from 5 pro-
grammers on Stack Overflow. We investigate the correlation
between the reliability of recognized posts and their scores on
Stack Overflow. We perform a linear regression on the score
and the percentage of unreliable examples, as shown by the
red line in Figure 6. However, we do not observe a strong
positive or negative correlation between the score of a post
and its reliability in terms of API misuse.
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Fig. 6: Percentage of Recognized Examples with API Misuse
from Score 0 to 20.

E. Manual Inspection

To check whether Stack Overflow posts with potential API
misuse reported by MAPLE indeed suggest undesirable API
usage, the first and the third authors randomly select up to 20
Stack Overflow posts for each API (574 in total) and manually
check the code snippets included in those posts. To reduce
subjectivity, the two authors inspect these posts independently
and then discuss any disagreements. This process takes around
35 hours per person. The authors confirm API misuse in 288



stack overflow posts (50%). The authors still disagree on 3
posts after discussion, since the semantics of the code snippets
in those 3 posts are ambiguous. Within this sampled data set
of 574 posts, MAPLE flags posts with undesirable API usage
in 295 posts with 85% precision and 96% recall. Please note
that this accuracy assessment is about flagging undesirable
or incorrect API usage in Stack Overflow posts, not about
assessing the accuracy of inferred API usage patterns.

a) False Negative Posts: MAPLE does not flag API
misuse in 13 posts, due to the abstraction in the structured
call sequence model. First, since our model abstracts away
the receivers of API calls, we cannot easily tell whether two
APIs are called on the same object or not during API misuse
detection. In 11 posts, expected APIs are called in a correct
order but are called on irrelevant objects. Second, our model
also abstracts away details in control constructs such as if
conditions and caught exceptions. In 2 posts, an if statement
after an API call does not check the return value of the API
call, and a catch clause does not catch the expected exception
thrown by an API.

b) False Positive Posts: MAPLE mistakenly detects API
misuse in 42 posts for three reasons. First, our approach
extracts API call sequences from each single method without
considering API calls between multiple methods. In 3 posts,
an expected API call or its guard condition occurs in the parent
caller of the method calling the API of interest. For instance,
the following example reads an input stream in readBoolean

but then closes it in main.10

1 public static void main() {
2 ...
3 readBoolean(in);
4 in.close();
5 }
6 private static void readBoolean(InputStream in) {
7 in.read();
8 }

Second, MAPLE checks whether a code snippet follows a
pattern via sequence comparison, which is not sufficient in
15 posts. For instance, the following post calls HashMap.get
(line 6) without checking whether the key exists.11 However,
the key is guaranteed to exist in the HashMap object, because
the key is obtained from the key set of the same HashMap

object via an iterator (line 2). Such cases can be addressed
by more advanced analysis by accounting for aliasing and full
symbolic execution.

1 HashMap characters = ...
2 Set keys = characters.keySet();
3 Iterator it = keys.iterator();
4 while(it.hasNext()) {
5 String key = (String) it.next();
6 String replacement = (String) characters.get(key);
7 ...
8 }

Third, in 21 posts, Stack Overflow programmers comment
informally that the code example can be improved by adding
an extra API call or a guard condition in surrounding natural

10http://stackoverflow.com/questions/9349545
11http://stackoverflow.com/questions/222361
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Fig. 7: Pattern mining performance.

Setting
Precision (%) Recall (%)

Rank
Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

k = 1 79 80 79 85 91 94 3

k = 2 77 79 79 84 92 95 4

k = 3 77 80 78 84 91 94 4

k = ∞ 71 74 73 77 91 94 4

No Slicing 65 65 67 73 81 89 9

TABLE V: Pattern mining accuracy using different k bounds.

language texts. However, MAPLE does not check the surround-
ing text and therefore may still report API usage violations.

VI. DISCUSSION

Sensitivity Analysis. Figure 7a shows the pattern inference
with the default thresholds (σ=0.5, θ=0.5) and with different
hop bounds for k. We run each experiment five times and
compute the average execution time. We kill a mining process,
if it does not terminate in 2 hours. Setting k to ∞ retains all
dependent API calls in a sliced call sequence, while setting k
to 1 retains only immediately dependent statements. Setting k
to 1 can achieve 3.3X speed up compared with setting k to
∞, since it creates shorter API call sequences by removing
transitively dependent API calls. MAPLE runs up to 4.6X
slower when not removing irrelevant API calls (no slicing).
Figure 7b shows the result of setting k to 1 while varying
minimum support thresholds for sequence mining and guard
condition mining. MAPLE slows down significantly as the
thresholds go below 0.5. MAPLE takes more than 2 hours
to mine patterns for three API methods, when setting the
minimum thresholds to 0.1, since MAPLE learns too many
candidate subsequences above the thresholds. On average,
MAPLE’s running time is within 10 minutes, with thresholds
above 0.3.

Table V shows the pattern mining accuracy using different
k bounds. Even though bounding dependency analysis with
lower bounds may lead to incomplete sequences with fewer
API calls, varying k does not affect accuracy much. However,
compared with unbounded analysis, filtering out transitively
dependent API calls can improve precision and recall slightly.
This is because long API call sequences may introduce ad-
ditional patterns of no interest. Furthermore, mining call se-
quences without removing any irrelevant calls through slicing



may add more noise, which may degrade precision and recall
by 14% and 12% respectively in top 3 patterns.
Threats to Validity. Our benchmark only includes 30 Java and
Android APIs from an existing API-misuse benchmark. Our
study may not generalize to APIs that programmers are less
likely to make mistakes on. Our study scope is limited to
code snippets found on Stack Overflow. Other types of online
resources such as programming blogs and other Q&A forums
may have better curated examples. MAPLE may overlook or
mis-identify API misuses due to the limitations discussed
in Section V-E. The two authors have manually inspected
randomly selected Stack Overflow posts and measured whether
the posts flagged by MAPLE indeed include undesirable or
incorrect API usage, reporting 93% precision and 96% recall
respectively. However, we acknowledge that we sampled only
574 out of 31,801 posts.

VII. RELATED WORK

Quality Assessment of Online Code Examples. Prior work has
investigated the quality of online code examples from different
perspectives. Nasehi et al. [38] find that code examples and
detailed, step-by-step explanations are the two key elements
in highly voted Stack Overflow posts. Dagenais and Robil-
lard [10] find that 89% of API names in code snippets from
online forums are ambiguous and cannot be easily resolved
due to the incompleteness of these snippets. Subramanian et
al. [8] 66% of 39k Stack Overflow snippets are free-standing
statements without class or method declarations. Yang et al. [9]
observe a similar result—3.89% of 91k Java code snippets
on Stack Overflow are parsable and only 1% are compilable.
Zhou et al. [11] find that 86 of 200 accepted posts on Stack
Overflow use deprecated APIs but only 3 of them are reported
by other programmers. However, none of these studies have
investigated the reliability of online code examples in the sense
that following these code examples verbatim may encourage
potential API misuse and consequently lead to unexpected
behavior such as program crashes in client programs. To fill the
gap, our work presents the first empirical study that flags API
misuses on Stack Overflow using API usage patterns learned
from massive code corpora.
API Usage Mining. There is a large body of literature in
API usage mining [12]–[20, 27, 39]. GrouMiner [12] models
programs as graphs and performs frequent subgraph mining
to find API usage patterns. However, their evaluation shows
that GrouMiner takes 16 mins to mine a single project on
average, which may not scale to massive code corpora with
millions of projects. Buse et al. [17] also model programs as
graphs but cluster them using the k-medoid algorithm [40].
Gruska et al. [39] extract call sequences from programs
and perform formal concept analysis [41] to infer pairwise
temporal properties of API calls. Similar to Gruska et al.,
there are many other specification mining techniques dedicated
to inferring temporal properties of API calls [42]–[47]. UP-
Miner [18] mines frequent sequence patterns but does not
retain control constructs and guard conditions in API usage
patterns. Several techniques [13, 15, 16] model programs as

item sets and infer pairwise programming rules using frequent
itemset mining [48], which does not consider temporal order-
ing or guard conditions of API calls.

MAPLE differs from existing pattern mining techniques in
two perspectives. First, MAPLE mines from massive code
corpora with millions of GitHub projects. Gruska et al. mine
from 6,000 Linux projects, which is the largest code corpus we
are aware of. However, it is still several orders of magnitude
smaller than MAPLE. Second, MAPLE mines not only API
call ordering but also API call guard conditions by using
a novel predicate mining technique. To our best knowledge,
Ramanathan et al. [49] and Nguyen et al. [30] are the only
two predicate mining techniques. Ramanathan et al. apply
inter-procedure data-flow analysis to collect all predicates
related to a callsite and then use frequent itemset mining
to find common predicates. Unlike MAPLE, Ramanathan et
al. only mine a single project and cannot handle seman-
tically equivalent predicates in different forms. Nguyen et
al. improve upon Ramanathan et al. by normalizing predicates
using several rewriting heuristics. Unlike these techniques,
MAPLE formalizes the predicate equivalence problem as a
satisfiability problem and leverages a SMT solver to group
logically equivalent predicates during guard mining.

VIII. CONCLUSION

Programmers often resort to code snippets in online Q&A
forums such as Stack Overflow to learn about how to use
APIs correctly during software development. However, the
reliability of code snippets in Stack Overflow posts is under-
investigated. In this paper, we present an approach called
MAPLE that compares online code snippets against API usage
mined from over 7 million Github projects and reports poten-
tial API usage violations in those snippets. Our study shows
that more than half of SO posts in our study contain potential
API usage violations that may produce the symptoms of crash
and resource leaks when used verbatim in client applications.
This finding demonstrates the prevalence and severity of API
misuse in code snippets on Stack Overflow.

The API usage mining technique implemented in MAPLE
combines efficient call sequence mining with guard condition
mining to retain both API call ordering and guard conditions
to protect individual API calls. MAPLE scales to millions of
projects, expanding the capability of API usage mining to an
unprecedented scale and does not sacrifice the fidelity and
expressiveness of its API usage representation by leveraging
control and data flow analysis. Our work provides a foundation
for a new human-in-the-loop approach to enrich and enhance
code snippets included in an online, collaborative Q&A forum
by contrasting them against frequent usage evidenced by
millions of Github projects.
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