
DREU Final Report: Exploring Diffusion
State Distance and Using it in Protein

Function Prediction

Indrani Ray
University of California, Berkeley

ray-indrani@berkeley.edu

Mentor: Dr. Lenore Cowen
Tufts University

lenore.cowen@tufts.edu

August 4, 2017

Abstract

Diffusion State Distance (DSD), defined in [1], is a novel way to calculate dis-
tances in graphs. For a connected graph, DSD outputs a distance matrix of
distances between all pairs of nodes. We worked on two projects: 1) We tried
to improve upon methods for protein function prediction in protein-protein
interaction (PPI) networks. 2) We explored the landscape of possible DSD
matrices for different popular families of unweighted graphs.

1 Introduction

1.1 Protein Function Prediction

An important problem in biological networks is protein function prediction.
The idea behind protein function prediction is to use the known functionali-

1

ties of some proteins to predict the unknown functionalities of other proteins
based on associations and connections between these two sets in a protein-
protein interaction (PPI) network. Cao et al. [1]. developed a metric, Dif-
fusion State Distance (DSD), which takes into account graph diffusion when
calculating proximity between nodes. More specifically, given a node, its
closest t neighbors in DSD distance vote on which functional labels to assign
to it. Together with Taylor Yeracaris from Carleton College and Joshua Tso
from Tufts University, I looked at trying a multistep process as described
below.

1.2 DSD Matrices for Popular Families of Graphs

The second project was to use the DSD matrix to explore graph non-isomorphisms.
The idea is that every connected graph has a corresponding DSD matrix.
The elements in those matrices can be lexicographically sorted by rows and
columns (Note: this will get rid of the labeling of DSD values to associated
node pairs.). The claim is that the resulting sorted matrices are invariant
under graph isomorphisms. Thus, if two graphs give different sorted matri-
ces, then they are not isomorphic. To this extent, we began an exploration of
DSD matrices of different families of graphs (complete, straight paths, trees,
etc.) with different numbers of nodes. A few interesting claims were made
under these observations, but the topic is still being studied for future work.

1.3 Structure of this Paper

The following sections are organized as follows. The following three sections
are with regards to the protein function prediction work: Section 2 gives
some background information including how DSD works and a description of
where our data comes from, Section 3 describes our methodology, and Section
4 explains our results. Section 5 discusses the ongoing work corresponding
to DSD matrices and graphs.

2

2 Background

2.1 How DSD Works

From Cao et al. [1] we get the following (which has been rephrased in
this paper). Let V = {v1, v2, ..., vn} be the set of all vertices in a con-
nected, undirected graph. Define He{k}(A,B) as the expected number of
times a random walk of k steps starting from node A will reach node B in
an unweighted graph. For a weighted graph, we bias the walk proportion-
ally toward the more confident edges. Assuming k is fixed, we can write
this as He(A,B). Then, ∀vi ∈ V we can define an n-dimensional vector
He(vi) = (He(vi, v1), He(vi, v2), ..., He(vi, vn)). The Diffusion State Distance
between two vertices, u, v ∈ V is DSD(u, v) = ||He(u)−He(v)||1 which is
the L1 norm of the He vectors of u and v.

2.2 The PPI Network

Our work uses the MIPS (Munich Information Center for Protein Sequences)
FunCat (functional catalogue) mapping between proteins and functional cat-
egories [2]. The deeper levels in MIPS are more informative and specific than
the higher levels, so this work uses MIPS Third Level Annotations. The PPI
network we use contains protein pairs and confidence scores associated with
the likelihood that there is an edge between them. These come from all
known physical interactions in the S. cerevisiae PPI network which comes
from version 3.2.102 of the BioGRID database [3]. We run this through
a package known as cDSD [4] which uses the largest connected component
which contains 4,990 nodes and 74,310 edges.

3 Our Methods

The overall procedure for protein function prediction is similar for both
classes of methods and is as follows. We first take the list of of proteins
and functionalities which comes from the MIPS Third Level Annotation [2].
Entries in this list include the protein and corresponding functionalities (e.g.
YGL122C 11.04.03 16.03.03 20.01.21). We then randomly split the list into
two groups – known and unknown. For the unknown group, we erase the

3

functionalities. This set becomes the test set. The other is the training set.
We use what we know about the PPI network from entries in the BioGrid
database [3]. which show two proteins and a corresponding confidence score
about whether or not they are connected (e.g. YGL122C YJR138W 0.25), to
predict the functionalities of the unknown group based on the functionalities
of proteins ”around” them. To make “around” more definite, we use cDSD
[4]. This determines a distance between every node pair in the network. For
each unknown node, we rank its neighbors based on DSD, and use a set of the
top “closest” neighbors to make predictions. We finally cross-validate these
results by seeing if the guessed functionality for each unknown protein was
part of one of the original functionalities that had been initially erased. We
tally up how many predictions were true and develop an accuracy percentage
to study the success rate of our methods.

3.1 Multiple Runs

For this method, we look at the unknown proteins and their neighbors within
a certain radius. The radius is determined for each unknown node by the
maximum DSD of the top ten closest known neighbors. Using this set of
neighbors, we predict each unknown node’s functionality by looking at the
functionalities of its known neighbors and weighing these values using the re-
ciprocal of the DSD between the two nodes. Therefore, a known node that is
“closer” to the unknown has a higher weight assigned to its votes. The func-
tionality with the maximum vote wins. Ties are broken by random selection
from the most popular votes, and the unlabeled nodes are labeled with their
top predictions. . The process is run a second time with these predictions,
so that if a previously unknown node is “closer” to an unknown node than
an actually known one, it can also use its recently predicted functionality to
vote for a new prediction for this unknown node. However, the votes cast
from these prior predictions are only weighted half as much (i.e. 0.5

DSD
). Once

again, ties are broken by random selection from the most popular votes. The
final predictions are then cross-validated with the values that were initially
erased.
There are two supplementary methods based on this one that incorporate a
notion we will call “threshold”. This is used during the first round. For each
unknown gene, instead of having one functionality with the maximum vote
be the initial prediction, we have a set of functionalities (whose votes are
greater than or equal to the threshold value times the maximum vote). This

4

set of functionalities is then used to make predictions in the second round.
So far, we have tried threshold values of 0.7 and 0.9.

3.2 Cascade Version

For this method, we take the list of unknown proteins and rank them based
on the proportion of the top 10 “closest” neighbors that are known, weighted
by 1

DSD
(in other words, each known neighbor contributes a vote which is the

reciprocal of the distance to the unknown node and these values are summed
up for each unknown node). We go through the ranked list of unknown nodes
and assign unknown proteins functionalities based on the most popular votes
from their neighbors. However, the vote for an unknown node may depend
on both functionalities predicted for other unknowns and actual functionali-
ties from knowns. So, the top unknown node will get a prediction based on
its known neighbors’ functionalities, but as we progress down the ranked list,
some unknowns chosen functionality may depend on the predictions found
for other prior unknowns. Again, the functionality is weighted 1

DSD
if it

comes from a known node and 0.5
DSD

if it comes from an unknown node, and
ties are broken by random selection.
There are two additional methods based on this one. The first one updates
the ranking of the unknown list in real time (so every time an unknown’s un-
known neighbor gets predicted, it’s number of “known” neighbors increases).
This in turn changes the order in which the nodes are predicted. The sec-
ond method is similar to the original, but uses the radius method from the
Multiple Runs (i.e. instead of looking at the top 10 neighbors, it looks at
the neighbors within the radius which is equal to the maximum DSD of the
10th “closest” known neighbor).

4 Results and Conclusion

The results from these experiments are summarized in the following table.
As most accuracies values fell near each other, their average is used as a
statistical measure. MR corresponds to the Multiple Runs method and CV
corresponds to the Cascade Version method. We have yet to collect more
results, and so far, each method has been tried a different number of times.
We make a result correct if we successfully label it with one of its known

5

functional labels. There are 181 different different functionalities on the 3rd
level of MIPS.

Method Used Number of
Trials

Average Accuracy

MR original 8 49.17%

MR with 0.7 threshold 14 48.86%

MR with 0.9 threshold 9 49.13%

CV original 11 49.44%

CV with realtime ranking 6 49.12%

CV with radius method 11 48.61%

As most of our results are near 50%, we are doing slightly better than previ-
ous methods which have around a 45% accuracy rate [1]. One ongoing idea
we have to improve this is to keep the set of all predictions for each unknown
node after the first round when we use a prediction to make a new one for
the Cascade Version; but, it is yet to be implemented. For future work, we
hope to develop better methods from looking at the biological interactions be-
tween proteins and combining cDSD with other function prediction methods.

5 DSD Matrices and Graphs

The idea behind this work is to explore DSD matrices for different graph
classes. In order to do so, various graphs of 3, 4, 5, 6, and more nodes were
studied – in particular, complete graphs, trees, and straight paths. The DSD
matrices for the graphs were computed using an online server [1]. The fol-
lowing claims and conjectures were found, but have yet to be proven.

6

5.1 DSD Matrices of Complete Graphs

A pattern was found from looking at the DSD matrices of the complete
graphs with 3, 4, 5, and 6 nodes. This pattern was used to make predictions
about the DSD matrices of complete graphs of 7, 8, 9, and 10 nodes; the
predictions were then validated by using the online server. The pattern is as
follows: The converged DSD matrices for complete graphs have 0’s along the
diagonal and the same value, let us call it k, everywhere else. Claim: For an
n+ 1-noded complete graph, k is the sum of the reciprocals of the triangular
numbers up to the triangular number corresponding to that with base n. In
other words, k = 1 + 1

3
+ 1

6
+ 1

10
+ ... + 1

Tn
.

In order to prove this, the method of computing DSD was studied by hand.
A 5-node complete graph was observed and DSD was computed by hand for
various lengths of random walks. The following was found:

Length of Ran-
dom Walk

k value k value

0 2 2

1 3
2

2− 1
2

2 13
8

2− 1
2

+ 1
8

3 51
32

2− 1
2

+ 1
8
− 1

32

The DSD values of random walks on a complete graph of 5 nodes are the
sums of terms in a geometric series with initial term 2 and common ratio −1

4
.

So for a random walk of length m, k =
2(−1

4

n−1)
−5
4

. This claim was generalized

to say: The k value for a complete graph of n + 1 nodes with random walk
of length m is the sum of the first m + 1 terms of a geometric series with
first term 2 and common ratio −1

n
. From here, it follows that for a converged

DSD matrix, the k value is what this series converges to. These claims

7

are yet to be proven. However, it was found that the sums of reciprocals
of triangular numbers is the converged sum of this geometric series. I.e.
1 + 1

3
+ 1

6
+ 1

10
+ ... + 1

Tn
= 2

1−−1
n

.

Proof (By Induction on the Number of Nodes)
Let a be the number of nodes.
Base case: a = 2. Then, 1 + 1

3
= 4

3
= 2

1−−1
2

. We are done.

Inductive hypothesis: Assume the equation holds true for a = x. That is,
1 + 1

3
+ 1

6
+ 1

10
+ ... + 1

Tx
= 2

1−−1
x

.

Show it holds true for a = x + 1.

1 +
1

3
+

1

6
+

1

10
+ ... +

1

Tx

+
1

Tx+1

=
2

1− −1
x

+
1

Tx+1

=
2

1− −1
x

+
1(

x + 2

2

)
=

2

1− −1
x

+
1

(x+2)(x+1)
2

=
2

1− −1
x

+
2

(x + 2)(x + 1)

=
2x

(x + 1)
+

2

(x + 2)(x + 1)

=
2x(x + 2) + 2

(x + 1)(x + 2)

=
2x2 + 4x + 2

(x + 1)(x + 2)

=
(2x + 2)(x + 1)

(x + 1)(x + 2)

=
2x + 2

x + 2

=
2

1− −1
x+1

Therefore, 1 + 1
3

+ 1
6

+ 1
10

+ ... + 1
Tn

= 2
1−−1

n

.

8

5.2 Other Findings and Future Work

1. In order to prove the above relationship of converged DSD matrices
being equal to the sum of the terms in a geometric series, we again
computed DSD by hand for a graph with 5-nodes with lengths of ran-
dom walks of 0, 1, 2, and 3. Given that an initial node had weight 1,
we found that at each step of a random walk, the weight of the non-
initial nodes were equal. For a complete graph of 5 nodes, these weights
were 0, 1

4
, 3
16
, 13
64

for random walks of length 0, 1, 2, and 3 respectively.
We came up with a formula to determine the weight at the non-initial
nodes for random walks of length m for a graph with 5 nodes to be
2 − 2(4

m−(−1)m
4m∗5) and generalized this to a graph with n + 1 nodes to

2− 2(n
m−(−1)m
nm∗(n+1)

). This has yet to be proven.

2. Another observation was made with regards to DSD values from 3, 4,
5, and 6-noded linear graphs. It is conjectured that the minimum non-
zero DSD value for such a graph with n+ 1 nodes is the same as the k
value corresponding to the complete graph of 2n nodes. However, this
has yet to be proven.

6 Acknowledgements

The author would like to thank her mentor Dr. Lenore Cowen from Tufts
University for inspiring her to to pursue this project as well as for support
and mentorship. She would also like to thank her fellow students Taylor Yer-
acaris and Joshua Tso for their contribution to this project as well as fellow
students Yuelin Liu, Samuel Slate, Faith Ocitti, Rebecca Newman, Daniel
Meyer, and Shari Sun for their support. She would also like to thank the
CRA Committee on the Status of Women in Computing Research (CRA-W)
for establishing this Distributed Research Experiences for Undergraduates
(DREU) program which has given her the opportunity and support to par-
ticipate in this research experience.

References

[1] Cao M, Zhang H, Park J, Daniels NM, Crovella ME, Cowen LJ, et al.
(2013) Going the Distance for Protein Function Prediction: A New Dis-

9

tance Metric for Protein Interaction Networks. PLoS ONE 8(10): e76339.
https://doi.org/10.1371/journal.pone.0076339

[2] Ruepp A, Zollner A, Maier D, Albermann K, Hani J, et al. (2004)The
funcat, a functional annotation scheme for systematic classification of
proteins from whole genomes. Nucleic acids research 32: 5539–5545.

[3] Stark C, Breitkreutz B, Reguly T, Boucher L, Breitkreutz A, et al. (2006)
Biogrid: a general repository for interaction datasets. Nucleic Acids Res
34: D535–D539.

[4] Cao M, Pietras CM, Feng X, Doroschak KJ, Schaffner T, Park J, Zhang
H, Cowen LJ, and Hescott B. (2014) New directions for diffusion-based
network prediction of protein function: incorporating pathways with con-
fidence. Bioinformatics 30: i219–i227.

10

