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I. INTRODUCTION

Swarm robotics allows for the extraction of various simple
behaviors that are observed in ecological systems to be used
to solve complex task [1]. One task that lends it self nicely
to the solutions that swarm robotics provides, is the surface
exploration and harvesting of planetary resources. With the
current state of planetary exploration making human explo-
ration infeasible, sending small, low-cost and low-maintenance
rovers to traverse the planet is currently the best option[2].The
harvesting of planetary resources to a single collection point
or center location is viewed as a central foraging problem[3].

The Distributed Deterministic Spiral Search Algorithm
(DDSA) is a search implementation that creates a singular
spiral that can be traversed by a number of rovers. Each spiral
that is traversed by a rover is interlocking with the others. This
allows for complete coverage of the spiral. It also ensures the
closet targets will be collected first.

We implemented the DDSA using the Gazebo simulator.
We observed the efficiency of rovers collection of targets. The
physical robots that were used in the simulator were known as
Swarmies. We compared the results the results to the central-
placing foraging algorithm(CPFA). Our goal is to extend the
works of using DDSA as baseline comparison to the CPFA.

II. RELATED WORKS

The CPFA is an ant inspired algorithm. While searching
their environments, rovers, by some probability, will place
waypoints at locations with high concentration of targets.
Rovers are influenced to search these waypoints in order to
search locations of high concentrations. Otherwise, rovers will
perform a random search.Parameters for the CPFA, such as the
probability to set waypoints, are optimized using a generic
algorithm [4], [5].

III. METHODS

A. Robot Simulation

Our Implementation of DDSA was simulated using the
robot simulator Gazebo. With Gazebo being a 3D simulator,
rovers in simulation were able to be exact replicas of their
physical counterparts.The dimensions of each rover was 36cm
wide and 45cm long and the detection range for the rovers was
about 6cm in front of them.The only slight differences between
physical and simulation had to do with there noise sensitivity

in their respective sensors. The resources that the rovers
were tasked with collecting are in the shape of small cubes
that contain AprilTag signatures on all sides. The AprilTag
signatures on the cubes make them detectable by the rovers
on-board camera.

In order to incorporate the DDSA into the simulation,
each rover was aware of the size of the swarm, its index
within the swarm, how far into its respective spiral, and its
range of detection[1]. When an AprilTag cube was detected
by a rover the rover would internally place a checkpoint at
the exact location that the rover successfully picked up the
AprilTag cube. After dropping off the cube, the rover would
then return back to a modified version of the previously set
checkpoint location. The checkpoint would be modified to
A) be a translation of the current checkpoint to the current
path in the spiral B) and be 1.0 meter back from the current
checkpoint. If on returning to the checkpoint more cubes were
observed, the rover would repeat the process, else the rover
would continue on with its spiral.

The Obstacle avoidance method was simple. If the rover
came in contact with an obstacle, it would take a slight turn
left and would drive 0.5m forward then continue on with its
target location. The only Obstacles that were possibly present
during the runs were, other rovers, the collection plate, and
the walls that set the boundary.

Fig. 1. Representation of three rovers implementing one interlocking spiral,
each different color spiral in the graph represent an individual rover.

B. Experimental Setup

The experimental runs consisted of three rovers that were
initiated around a collection point that had dimensions that
were 1m by 1m. 256 cubes were placed in a 7.5m by 7.5m



environment. The placement of the cubes around the environ-
ment were placed in a Power Law distribution. AprilTag cubes
were only counted as collected if they were located within
the collection plate at the end of each run. Each run lasted
30 min, in simulation time. All figures are accounting for 15
experimental runs. If during a run a rover died, we restarted
the entire simulation, unless the rover died after the 25min
mark.

IV. RESULTS
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Fig. 2. The average AprilTags collected for both the CPFA and the DDSA.
The graph also depicts the standard deviation for each search algorithm.

The results show that, on average, DDSA out performs
CPFA (figure 2). DDSA also had a slightly higher standard
deviation (σ) equaling 11.659 compared to CPFA’s σ only
equating to 8.531. Both the DDSA and CPFA benefit from
the trait of returning to to large clusters, but DDSA’s imple-
mentation will always send it back towards the location of
which it picked up an target, while CPFA’s implementation
allows it the option to search a new location after dropping
off a target instead of returning to its previous pickup location.

The distribution for both DDSA and CPFA both fell under
a nearly mesokurtic distribution. We calculated the kurtois by
using the sample excess kurtosis formula, and we got a kurtosis
of 0.092 and -0.706 for DDSA and CPFA respectfully. In terms
of the symmetry of each of distribution, both search algorithms
were nearly symmetrical. DDSA had a slightly negative skew-
ness, while CPFA had a slightly positive skewness.

V. DISCUSSION

Our results showed that DDSA out performed CPFA, which
is similar to the results found by Fricke. Both of our results
saw DDSA outperform CPFA, but we saw a greater margin
between the performances in CPFA and DDSA. We believe
that since Gazebo took in to account more factors than the
ArGos simulator, such as the rovers sensitivity to noise, the
complexities of obstacle avoidance and the parameters dealing
with a physical robot, it affected how efficiently the CPFA
could work be implemented in a 3D environment.

Our goal going forward would to continue to debug our code
for and bugs that come up when the simulation is running,
also when that is complete, to run more experimental runs to
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Fig. 3. The Normal Distribution curve for the CPFA and the DDSA

gather more data. Our results accounted for only 15 runs per
each search algorithm, so having more data will paint a bigger
picture for both the DDSA and CPFA.

Our biggest goal would to test and compare both methods
on the live physical rovers in a real world environment. With
the rovers seen in simulation being drastically different from
there physical counterpart, it would interesting to see how each
algorithm fairs in the real world.

VI. CONCLUSION

With DDSA’s ability to take advantage of its deterministic
characteristics of gathering the nearest targets first and nearly
collecting all targets that lay within the coverage of the
spiral, it was able to outperform the CPFA search method[1].
Gazebo’s role in this truth, stemmed from how far more
complex it was from ArGos. It will be interesting to see the
comparison of these two algorithms when the bugs and tunning
are fixed and the algorithms get tested on physical robots.
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