

A​ ​central-place​ ​foraging​ ​algorithm​ ​using​ ​Swarmies​ ​in​ ​the
Gazebo​ ​simulated​ ​environment

Manuel​ ​G.​ ​Meraz

Abstract-- The Moses Biological Computational Lab

observes the swarming behaviors of natural complex
systems with an emphasis on foraging. Foraging
behaviors arise out of necessity in order for these
organisms to sustain themselves, and as such the
strategies that are used by these organisms can be
modeled into a generalized algorithm using stochastic
methods with parameters that can be optimized for the
given environment. The central-place foraging
algorithm (CPFA) is one of these algorithms; inspired
by the seed-harvester ants of New Mexico, the narrow
window of time in which they have available to them
forces the ants to evolve an optimal search strategy
biased towards the quantity of food collected. This
foraging strategy has previously been implemented in
the iAnt robots developed here, as well as in the
ARGoS simulator. As the lab continues to study the
CPFA and its derivatives, the need to move from
simulated robots living in ideal environments, to more
chaotic and realistic environments begins to arise as a
stepping stone towards application. The Gazebo
simulator utilized by the robot operating system (ROS)
framework was the next obvious choice using
Swarmies, and the increased complexity highlights the
importance of a robust collision avoidance strategy.
Initial testing shows us that the collection efficiency
per​ ​robot​ ​in​ ​Gazebo​ ​decreases​ ​as​ ​compared​ ​to​ ​ARGoS.

I.​ ​Introduction

The cost of robot components have reached a state of
affordability, designing and building robots en masse
has become something that, while previously
impractical, is now completely feasible. These low-cost
robots would ideally be capable of working together as
a decentralized unit to explore unmapped environments
using efficient communication patterns to optimize
foraging​ ​behaviors.

However, the problem with low-cost robots is that
their sensors are noisy and unreliable for precise
navigation and in a simulated environment, each robot
is an exact clone of each other. In physical robots, while

most of the robots are built with the same hardware,
they differ enough such that they will scale differently.
It’s possible that one robot has a loose wheel that
generates noise in the odometry of the robot, which
then inevitably falls off, while another robot’s battery is
nearly​ ​drained​ ​and​ ​power​ ​output​ ​is​ ​decreased.

One step closer towards a physical robot, is the
environment provided to us by the Gazebo simulated
environment, which simulates how physical robots
behave much more accurately than the ARGoS
simulated​ ​environment.

The goal of this project was to start the migration
process from the ARGoS simulator as the standard tool
to model and collect data for swarm algorithms, to the
Swarmie robots in Gazebo where the software can
easily be translated to work in their physical robot
counterparts.

II.​ ​Related​ ​Work

A.​ ​Low-cost​ ​​Robots

The Kilobots [1] are an example of low cost robots
that can be mass manufactured to study swarm
behaviors. The iAnt robot platform developed here gave
us early insights into how an earlier derivative of the
CPFA [2] behaves in physical robots as compared to a
simulated​ ​environment.

We learned that the simulated experiments that used
an agent based model showed slightly better scaling
than the real robots. Which is not surprising because
real robots have more difficulty with avoiding each
other, physical hardware limitations, imperfect
localization and the real possibility that physical robots
confuse​ ​each​ ​other​ ​for​ ​other​ ​objects​ ​[3].

B.​ ​Swarm​ ​Foraging​ ​Algorithms

The CPFA can be optimized up to a certain point, but
the problem with the CPFA is that is not scalable. As
the number of robots increases in the swarm, the central
collection zone inevitably becomes congested and

1

traffic jams become inevitable, thus time spent avoiding
collisions increases. There is a threshold for the number
of robots where robots inevitably end up spending more
time avoiding collision with each other, and
considerably​ ​less​ ​time​ ​spent​ ​foraging.

To solve this problem, the multi-place foraging
algorithm (MPFA) came to be as a natural derivative of
the CPFA [4]. The MPFA solves the congestion
problem by adding in the necessary quantity of
collection zones for optimal foraging rates. As such, the
algorithm​ ​is​ ​able​ ​to​ ​scale​ ​up​ ​to​ ​satisfy​ ​any​ ​search​ ​area.

The MPFA is not just the CPFA with multiple nests;
the MPFA can be implemented with both static and
dynamic collection zones. The dynamic collectionzones
will place themselves in the location required to
minimize the travel time of the foraging robots, and
maximize the search time the robots are in. These
foraging algorithms, while useful, do not tell on their
own tell us how well they work because then this begs
the​ ​question,​ ​​relative​ ​to​ ​what?

The answer to this is a distributed deterministic spiral
search (DDSA). The purpose of the DDSA is to serve
as a benchmark for swarm foraging algorithms, that
other swarm foraging algorithms can compare
themselves to. Now the CPFA, MPFA, and any other
algorithm within this category can systematically be
compared​ ​to​ ​and​ ​studied​ ​relative​ ​the​ ​DDSA.

III.​ ​Methods

A.​ ​The​ ​Swarmie

Swarmies are small robotic vehicles measuring
approximately 30 cm x 20 cm x 20 cm. Each Swarmie
is equipped with sensors, a webcam, GPS system, and
Wi-Fi antenna. They operate autonomously and can be
programmed to communicate and interact as a
collective​ ​swarm​ ​[6].

The simulated swarmies and the physical swarmies
have the same geometry and sensors as the physical
swarmies.

B.​ ​Robot​ ​Simulation

We implemented the CPFA using the Gazebo robot
simulator that comes along with ROS. Robot simulation
is an essential tool in every roboticist's toolbox. A
well-designed simulator makes it possible to rapidly
test algorithms, design robots, perform regression
testing, and train AI system using realistic scenarios.
Gazebo offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and
outdoor environments. It provides a robust physics
engine, high-quality graphics, and convenient
programmatic​ ​and​ ​graphical​ ​interfaces.

The parameters for the robots that are used are
informed by the Swarmies. The major difference
between the simulated and physical robots is that the
positional data from odometry in the physical robots is
much less accurate than the simulated robot, which has
its pros and cons. The good part of this is that it allows
us to focus more on the logical portion of the algorithm
since we can assume localization is not an issue.
Meaning we spend less time thinking about how to
account for the robot's positional data and more on
higher level state machines with a higher certainty. The
downside to this is that when we transfer the code to the
physical robots, it will not work the first time. We will
need to add in additional functionality to account for
the​ ​localization​ ​error.

Targets are cubes that have dimensions of
approximately 3.2 cm​3​. The robot’s default forward and
backward movement speed is about 0.5 m/s with a
viewing distance of up to 1 meter due to the camera
being​ ​angled​ ​down​ ​towards​ ​the​ ​ground.

3

C.​ ​Experimental​ ​Setup

The robots were set up in a barriered square arena with
a 15 m​2 ​area. 3 robots were spawned facing the central
collection zone at, which has a square shape and area of
1 m​2​, at a distance of 1.32m away from the dead center.
256 targets were dispersed using a power law
distribution, or partially clustered, with 1 cluster of 16,
4 clusters of size 64, 16of size 4, and 64 single targets.
All experiments last 30 minutes, with a total of 15
experiments​ ​that​ ​were​ ​ran.

​ ​​ ​​ ​IV.​ ​Results

The​ ​purpose​ ​of​ ​the​ ​trial​ ​runs​ ​were​ ​to​ ​compare​ ​the
DDSA​ ​with​ ​the​ ​CPFA​ ​and​ ​see​ ​how​ ​they​ ​performed.
These​ ​results​ ​are​ ​just​ ​preliminary​ ​and​ ​do​ ​not​ ​mean
anything​ ​as​ ​the​ ​way​ ​the​ ​algorithms​ ​were​ ​coded​ ​are​ ​not
fundamentally​ ​following​ ​the​ ​same​ ​structure.​ ​The
CPFA’s​ ​complexity​ ​is​ ​much​ ​higher​ ​than​ ​the​ ​DDSA’s
and​ ​as​ ​such​ ​it​ ​needs​ ​more​ ​development​ ​time,​ ​which​ ​I
was​ ​not​ ​able​ ​to​ ​completely​ ​finish.

Trail CPFA DDSA

1 59 92

2 57 81

3 52 102

4 67 84

5 59 83

6 48 85

7 47 81

8 46 62

9 41 97

10 51 86

11 49 105

12 71 82

13 45 107

14 58 98

15 61 86

The​ ​mean​ ​for​ ​the​ ​CPFA​ ​ended​ ​up​ ​as​ ​~54​ ​and​ ​the​ ​mean
for​ ​the​ ​DDSA​ ​ended​ ​up​ ​being​ ​~88​ ​targets​ ​collected.
The​ ​major​ ​cause​ ​for​ ​the​ ​difference​ ​in​ ​the​ ​two
algorithms​ ​is​ ​the​ ​obstacle​ ​collision​ ​algorithm​ ​that​ ​is
currently​ ​implemented.​ ​The​ ​CPFA​ ​has​ ​a​ ​very​ ​sensitive
collision​ ​avoidance​ ​algorithm​ ​whereas​ ​the​ ​DDSA​ ​was
able​ ​to​ ​have​ ​it​ ​be​ ​minimized​ ​in​ ​order​ ​to​ ​avoid
collisions.​ ​With​ ​the​ ​DDSA​ ​this​ ​could​ ​be​ ​done​ ​because
the​ ​paths​ ​for​ ​all​ ​the​ ​robots​ ​are​ ​predetermined​ ​and
because​ ​localization​ ​in​ ​the​ ​simulator​ ​is​ ​very​ ​accurate,
we​ ​can​ ​guarantee​ ​that​ ​as​ ​long​ ​as​ ​the​ ​predetermined
paths​ ​do​ ​not​ ​collide,​ ​then​ ​the​ ​robots​ ​do​ ​not​ ​need
obstacle​ ​avoidance.​ ​Ideally​ ​both​ ​algorithms​ ​would
utilize​ ​the​ ​same​ ​obstacle​ ​avoidance​ ​algorithm​ ​to​ ​see​ ​a
more​ ​accurate​ ​comparison.

​ ​​ ​References

1. M.​ ​Rubenstein,​ ​C.​ ​Ahler,​ ​and​ ​R.​ ​Nagpal.
Kilobot:​ ​a​ ​low​ ​cost​ ​scalable​ ​robot​ ​system​ ​for
collective​ ​behaviors.​ ​In​ ​Proceedings​ ​of​ ​the
IEEE​ ​International​ ​Conference​ ​on​ ​Robotics
and​ ​Automation,​ ​pages​ ​3293–3298,​ ​2012.

2. J.​ ​P.​ ​Hecker,​ ​M.​ ​E.​ ​Moses,​ ​Beyond
pheromones:​ ​evolving​ ​error-tolerant​ ​flexible
and​ ​scalable​ ​ant-inspired​ ​robot​ ​swarms​ ​Swarm
Intelligence,​ ​US:Springer,​ ​vol.​ ​9,​ ​pp.​ ​43-70,
2015.

3. Hecker,​ ​J.​ ​P.,​ ​Letendre,​ ​K.,​ ​Stolleis,​ ​K.,
Washington,​ ​D.,​ ​and​ ​Moses,​ ​M.​ ​E.​ ​(2012).
Formica​ ​ex​ ​Machina:​ ​Ant​ ​Swarm​ ​Foraging
From​ ​Physical​ ​to​ ​Virtual​ ​and​ ​Back​ ​Again.
Swarm​ ​Intelligence,​ ​7461:252–259.

4. Q.​ ​Lu,​ ​J.​ ​P.​ ​Hecker,​ ​and​ ​M.​ ​E.​ ​Moses.​ ​The
MPFA:​ ​A​ ​Multiple-Place​ ​Foraging​ ​Algorithm
for​ ​Biologically-Inspired​ ​Robot​ ​Swarms.
IEEE/RSJ​ ​International​ ​Conference​ ​on
Intelligent​ ​Robots​ ​and​ ​Systems,​ ​2016

5. G.​ ​Matthew​ ​Fricke,​ ​Joshua​ ​P.​ ​Hecker,​ ​Antonio
D.​ ​Griego,​ ​Linh​ ​T.​ ​Tran,​ ​Melanie​ ​E.​ ​Moses,
"A​ ​distributed​ ​deterministic​ ​spiral​ ​search
algorithm​ ​for​ ​swarms",​ ​​Intelligent​ ​Robots​ ​and
Systems​ ​(IROS)​ ​2016​ ​IEEE/RSJ​ ​International

3

Conference​ ​on​,​ ​pp.​ ​4430-4436,​ ​2016,​ ​ISSN
2153-0866.

6. https://github.com/BCLab-UNM/Swarmathon-
Robot

3

