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Abstract-- The Moses Biological Computational Lab       

observes the swarming behaviors of natural complex       
systems with an emphasis on foraging. Foraging       
behaviors arise out of necessity in order for these         
organisms to sustain themselves, and as such the        
strategies that are used by these organisms can be         
modeled into a generalized algorithm using stochastic       
methods with parameters that can be optimized for the         
given environment. The central-place foraging     
algorithm (CPFA) is one of these algorithms; inspired        
by the seed-harvester ants of New Mexico, the narrow         
window of time in which they have available to them          
forces the ants to evolve an optimal search strategy         
biased towards the quantity of food collected. This        
foraging strategy has previously been implemented in       
the iAnt robots developed here, as well as in the          
ARGoS simulator. As the lab continues to study the         
CPFA and its derivatives, the need to move from         
simulated robots living in ideal environments, to more        
chaotic and realistic environments begins to arise as a         
stepping stone towards application. The Gazebo      
simulator utilized by the robot operating system (ROS)        
framework was the next obvious choice using       
Swarmies, and the increased complexity highlights the       
importance of a robust collision avoidance strategy.       
Initial testing shows us that the collection efficiency        
per​ ​robot​ ​in​ ​Gazebo​ ​decreases​ ​as​ ​compared​ ​to​ ​ARGoS.  

I.​ ​Introduction  

The cost of robot components have reached a state of           
affordability, designing and building robots en masse       
has become something that, while previously      
impractical, is now completely feasible. These low-cost       
robots would ideally be capable of working together as         
a decentralized unit to explore unmapped environments       
using efficient communication patterns to optimize      
foraging​ ​behaviors.  

However, the problem with low-cost robots is that         
their sensors are noisy and unreliable for precise        
navigation and in a simulated environment, each robot        
is an exact clone of each other. In physical robots, while           

most of the robots are built with the same hardware,          
they differ enough such that they will scale differently.         
It’s possible that one robot has a loose wheel that          
generates noise in the odometry of the robot, which         
then inevitably falls off, while another robot’s battery is         
nearly​ ​drained​ ​and​ ​power​ ​output​ ​is​ ​decreased.  

One step closer towards a physical robot, is the          
environment provided to us by the Gazebo simulated        
environment, which simulates how physical robots      
behave much more accurately than the ARGoS       
simulated​ ​environment.  

The goal of this project was to start the migration           
process from the ARGoS simulator as the standard tool         
to model and collect data for swarm algorithms, to the          
Swarmie robots in Gazebo where the software can        
easily be translated to work in their physical robot         
counterparts.  

 

II.​ ​Related​ ​Work  

A.​ ​Low-cost​ ​​Robots 

The Kilobots [1] are an example of low cost robots           
that can be mass manufactured to study swarm        
behaviors. The iAnt robot platform developed here gave        
us early insights into how an earlier derivative of the          
CPFA [2] behaves in physical robots as compared to a          
simulated​ ​environment.  

We learned that the simulated experiments that used         
an agent based model showed slightly better scaling        
than the real robots. Which is not surprising because         
real robots have more difficulty with avoiding each        
other, physical hardware limitations, imperfect     
localization and the real possibility that physical robots        
confuse​ ​each​ ​other​ ​for​ ​other​ ​objects​ ​[3]. 

B.​ ​Swarm​ ​Foraging​ ​Algorithms 

The CPFA can be optimized up to a certain point, but            
the problem with the CPFA is that is not scalable. As           
the number of robots increases in the swarm, the central          
collection zone inevitably becomes congested and      
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traffic jams become inevitable, thus time spent avoiding        
collisions increases. There is a threshold for the number         
of robots where robots inevitably end up spending more         
time avoiding collision with each other, and       
considerably​ ​less​ ​time​ ​spent​ ​foraging.  

To solve this problem, the multi-place foraging        
algorithm (MPFA) came to be as a natural derivative of          
the CPFA [4]. The MPFA solves the congestion        
problem by adding in the necessary quantity of        
collection zones for optimal foraging rates. As such, the         
algorithm​ ​is​ ​able​ ​to​ ​scale​ ​up​ ​to​ ​satisfy​ ​any​ ​search​ ​area.  

The MPFA is not just the CPFA with multiple nests;           
the MPFA can be implemented with both static and         
dynamic collection zones. The dynamic collectionzones      
will place themselves in the location required to        
minimize the travel time of the foraging robots, and         
maximize the search time the robots are in. These         
foraging algorithms, while useful, do not tell on their         
own tell us how well they work because then this begs           
the​ ​question,​ ​​relative​ ​to​ ​what?  

The answer to this is a distributed deterministic spiral          
search (DDSA). The purpose of the DDSA is to serve          
as a benchmark for swarm foraging algorithms, that        
other swarm foraging algorithms can compare      
themselves to. Now the CPFA, MPFA, and any other         
algorithm within this category can systematically be       
compared​ ​to​ ​and​ ​studied​ ​relative​ ​the​ ​DDSA.  

III.​ ​Methods  

A.​ ​The​ ​Swarmie 

Swarmies are small robotic vehicles measuring       
approximately 30 cm x 20 cm x 20 cm. Each Swarmie           
is equipped with sensors, a webcam, GPS system, and         
Wi-Fi antenna. They operate autonomously and can be        
programmed to communicate and interact as a       
collective​ ​swarm​ ​[6].  

The simulated swarmies and the physical swarmies        
have the same geometry and sensors as the physical         
swarmies.  

 

 

B.​ ​Robot​ ​Simulation 

We implemented the CPFA using the Gazebo robot         
simulator that comes along with ROS. Robot simulation        
is an essential tool in every roboticist's toolbox. A         
well-designed simulator makes it possible to rapidly       
test algorithms, design robots, perform regression      
testing, and train AI system using realistic scenarios.        
Gazebo offers the ability to accurately and efficiently        
simulate populations of robots in complex indoor and        
outdoor environments. It provides a robust physics       
engine, high-quality graphics, and convenient     
programmatic​ ​and​ ​graphical​ ​interfaces.  

The parameters for the robots that are used are          
informed by the Swarmies. The major difference       
between the simulated and physical robots is that the         
positional data from odometry in the physical robots is         
much less accurate than the simulated robot, which has         
its pros and cons. The good part of this is that it allows             
us to focus more on the logical portion of the algorithm           
since we can assume localization is not an issue.         
Meaning we spend less time thinking about how to         
account for the robot's positional data and more on         
higher level state machines with a higher certainty. The         
downside to this is that when we transfer the code to the            
physical robots, it will not work the first time. We will           
need to add in additional functionality to account for         
the​ ​localization​ ​error.  

Targets are cubes that have dimensions of        
approximately 3.2 cm​3​. The robot’s default forward and        
backward movement speed is about 0.5 m/s with a         
viewing distance of up to 1 meter due to the camera           
being​ ​angled​ ​down​ ​towards​ ​the​ ​ground.  
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C.​ ​Experimental​ ​Setup 

The robots were set up in a barriered square arena with            
a 15 m​2 ​area. 3 robots were spawned facing the central           
collection zone at, which has a square shape and area of           
1 m​2​, at a distance of 1.32m away from the dead center.            
256 targets were dispersed using a power law        
distribution, or partially clustered, with 1 cluster of 16,         
4 clusters of size 64, 16of size 4, and 64 single targets.            
All experiments last 30 minutes, with a total of 15          
experiments​ ​that​ ​were​ ​ran.  

​ ​​ ​​ ​IV.​ ​Results 

The​ ​purpose​ ​of​ ​the​ ​trial​ ​runs​ ​were​ ​to​ ​compare​ ​the 
DDSA​ ​with​ ​the​ ​CPFA​ ​and​ ​see​ ​how​ ​they​ ​performed. 
These​ ​results​ ​are​ ​just​ ​preliminary​ ​and​ ​do​ ​not​ ​mean 
anything​ ​as​ ​the​ ​way​ ​the​ ​algorithms​ ​were​ ​coded​ ​are​ ​not 
fundamentally​ ​following​ ​the​ ​same​ ​structure.​ ​The 
CPFA’s​ ​complexity​ ​is​ ​much​ ​higher​ ​than​ ​the​ ​DDSA’s 
and​ ​as​ ​such​ ​it​ ​needs​ ​more​ ​development​ ​time,​ ​which​ ​I 
was​ ​not​ ​able​ ​to​ ​completely​ ​finish.  

 

Trail CPFA DDSA 

1 59 92 

2 57 81 

3 52 102 

4 67 84 

5 59 83 

6 48 85 

7 47 81 

8 46 62 

9 41 97 

10 51 86 

11 49 105 

12 71 82 

13 45 107 

14 58 98 

15 61 86 

 

The​ ​mean​ ​for​ ​the​ ​CPFA​ ​ended​ ​up​ ​as​ ​~54​ ​and​ ​the​ ​mean 
for​ ​the​ ​DDSA​ ​ended​ ​up​ ​being​ ​~88​ ​targets​ ​collected. 
The​ ​major​ ​cause​ ​for​ ​the​ ​difference​ ​in​ ​the​ ​two 
algorithms​ ​is​ ​the​ ​obstacle​ ​collision​ ​algorithm​ ​that​ ​is 
currently​ ​implemented.​ ​The​ ​CPFA​ ​has​ ​a​ ​very​ ​sensitive 
collision​ ​avoidance​ ​algorithm​ ​whereas​ ​the​ ​DDSA​ ​was 
able​ ​to​ ​have​ ​it​ ​be​ ​minimized​ ​in​ ​order​ ​to​ ​avoid 
collisions.​ ​With​ ​the​ ​DDSA​ ​this​ ​could​ ​be​ ​done​ ​because 
the​ ​paths​ ​for​ ​all​ ​the​ ​robots​ ​are​ ​predetermined​ ​and 
because​ ​localization​ ​in​ ​the​ ​simulator​ ​is​ ​very​ ​accurate, 
we​ ​can​ ​guarantee​ ​that​ ​as​ ​long​ ​as​ ​the​ ​predetermined 
paths​ ​do​ ​not​ ​collide,​ ​then​ ​the​ ​robots​ ​do​ ​not​ ​need 
obstacle​ ​avoidance.​ ​Ideally​ ​both​ ​algorithms​ ​would 
utilize​ ​the​ ​same​ ​obstacle​ ​avoidance​ ​algorithm​ ​to​ ​see​ ​a 
more​ ​accurate​ ​comparison.  
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