Motion Planning Test Suite

Leonel Pena, Marcos Pena, Brandon Martinez, Art Martinez, Jonathan Mulhern, Irving Solis, Shawna Thomas,
Nancy M. Amato

Abstract— Motion planning is the problem of finding a valid
path for a robot from a start to goal configuration. In addition
to robotics, it has applications to other fields in computer
science such as CAD software, autonomous vehicles, and artificial
intelligence. Motion planning in robetics is difficult because of
the large number of variables needed to account for a robots
shape, size, dynamic environments, and forces such as gravity and
friction. Weve designed a test suite to evaluate motion planning
algorithms, that is integrated with Parasol Lab’s C++ motion
planning library (PMPL), visualization tool (Vizmo++), and a
physically based robot simulator. In particular, weve developed
benchmark scenarios to exercise motion planning algorithms in a
variety of scenarios and for a range of robots. A representative set
of problems were designed such as freebody scenarios that varied
from two to three dimensions, a crane-like, robot with joints
tasked with moving its arm from one location to another, and a
car-like robot with different actuators that limited its movement
to seem more car-like. These benchmark scenarios will enable the
comparison and evaluation of future motion planning algorithms

I. INTRODUCTION

Living in the 2Ist century we as a human race have
continued to advance our technology in pursuit to always find a
solution for whatever problem we face. Nowadays we revolve
around computers and what we can create and compute from
the machines, but the emphasis on technology couldn’t be
stressed enough as we are essentially stepping into the future.
We are trying to be as efficient as we can be, and this also
involves removing humans from an environment and replacing
them with robots that are autonomous. However, before a robot
can become autonomous it needs to be programmed to be able
to navigate through environments and perform certain tasks.
To be able to do this alone these robots need motion planning.

Motion Planning is a problem with many applications such
as robotics and computational biology. Motion planning entails
finding a valid path from a start configuration to an end
configuration. This can be approached in many ways, such as
having a direct path, a path with clearance, or a path that takes
an agent near obstacles. This called for a new way to simulate
these motion planning strategies as the method already in place
did not take into account forces, the robots own shape and size,
and dynamic environments.

Parasol labs has developed a C++ library, named PMPL
(Parasol Motion Planning Library), that contains several al-
gorithms and strategies for solving many different kinds of
problems. Sampling methods within the library include, but are
not limited to, PRM, MAPRM, OBPRM, RRT, etc. Basic prob-
abilistic road map (PRM), medial-axis probabilistic road map

This research supported in part by NSF awards CNS-0551685, CCF
0702765, CCF-0833199, CCF-1439145, CCF-1423111, CCF-0830753, 1IIS-
0916053, 1IS-0917266, EFRI-1240483, RI-1217991, by NIH NCI R25
CA090301-11,and by DOE awards DE-AC02-06CH11357, DE-NA0002376,
B575363.

(MAPRM), object-based probabilistic road map (OBPRM),
and rapidly-exploring random tree (RRT). PRM is when there
is a random sampling, nodes are randomly placed within the
environment and then connected to make a road-map, and
the most efficient and complete path is used for the agent
to move across the solved path. MAPRM is when the sampler
acquires equal distance from the obstacles and the edge of the
environment to create an arbitrary skeleton so that an agent
will essentially traverse this equal distanced path. OBPRM is
when an environment is sampled with the intention to place
nodes near obstacles so that the agent can maneuver around
them. An RRT grows a tree rooted at the starting configuration
by using random samples from the search space. As each
sample is drawn, a connection is attempted between it and the
nearest state in the tree until it reaches the goal configuration.
After the process of finding a valid path for a robot to take
place there is a visual tool that allows us to view a simulation
of the problem being solved.

The PMPL simulator was developed to serve this very cause.
Within it, motion planning strategies could be ran, tested, and
simulated with all the desired variables. Beforehand, a motion
planning strategy would still be ran and computed, now real
world variables could be added to further realize the tests being
run. So while before, a problem that would’ve been solved
without accounting for forces such as gravity and friction will
now face the same test in the test suite with the addition of
these variables to see if the task would still be completed.

II. RELATED WORK

In this section, we review existing methods and explain
concepts and terms that we will use in the rest of the paper.

A. PMPL

As stated before, PMPL is a C++ library that has sampling-
based algorithms developed by Parasol Labs, the use of
PMPL correlates with motion planning strategies. It is capable
of solving several motion planning problems with different
strategies and approaches. Not only is PMPL an essential part
of Parasol Labs, but it is always used for computations and
simulations. With PMPL having many purposes, storing code,
running simulations, and constantly testing, it is an important
component that has been and will be used.

B. Vizmo

Within the existing work there is a software, Vizmo, that
has been utilized to create environments, objects, and also
used to view final paths a planner creates. Upon running
experiments with Vizmo there are several types of files used;
environment, query, path, and any object files that are created

and incorporated. It doesn’t take outside forces into account
essentially making the space into a vacuum. For example, if
gravity or friction were to be implemented it would mimic
better how an agent or robot moves physically.

[II. METHODOLOGY

The purpose of our work was to develop several benchmarks
to help evaluate motion planning algorithms and therefore
help the Parasol Lab to exercise their algorithms in a range
of scenarios. Our goal was to create a set of comprehensive
problems for future use. We created several scenarios that were
quite varied, these included a set of 2D problems, a set of
3D problems, and a set of problems featuring manipulator
robots all within the simulator. With the tools on hand, we
also simulated a car-like robot which had limited movement
imposed on it to better simulate a physical robot, which we
then mirrored in the real world with actual physical robots.

In order to have fair results between all planners; such as,
MAPRM, OBPRM, and PRM, the same scenarios were ran
with all the strategies. This meant that some strategies would
be more suited to some tasks than others, and this would
be easily visualized in the motion planning test suite. Our
approach throughout the summer involved several steps to
ensure that we were achieving viable results.

1) An environment is created by adding several objects
and obstacles and setting their positions. We determine
whether it is a 2D or a 3D environment depending on
the problem.

2) A robot is created through the use of triangulating
vertices’s and making faces. The robot then moves along
within the environment.

3) A query is created by determining a start and goal
configuration within the environment. The query is only
valid if it is within the environment and does not collide
with obstacles.

4) A motion planning strategy is applied so that the query
is solved and a path is then formed for the robot to
follow.

5) The robot follows the final path within the simulation
and several files are created once it has completed
solving.

For Physical Robots:

6) Define controls for the robot through the definitions of
actuators. It essentially gives limits to how the robot can
move forwards and backwards at a certain speed.

7) Connection is established between Robot and Host
through the creation of a server that allows for the
passing of information and instructions.

8) Robot follows the path as it would within a simulation;
however, the robot moving in the real world is different
depending on different factors.

2. ARobot is
created

3. AQueryis
created

1. An Environment is
created

Kb AN

4. Motion Planning
Strategy is applied

5. Robot follows final
path

Fig. 1. Motion Planning

IV. EXPERIMENTS
A. Scenarios

1) 2D Freebody Translational Robot: Within this scenario,
the square robot was tasked with translating through two
obstacles without rotating or changing orientation to reach an
end goal on a planar surface. See Fig. 5 for results

2) 2D Freebody Rotational Robot: Within this scenario, the
square robot was tasked with translating and rotating through
nine obstacles to reach an end goal on a planar surface. See
Fig. 6 for results

3) 3D Freebody Translational Robot: Within this scenario,
the cuboid robot was tasked with translating through two
obstacles without rotating or changing orientation to reach an
end goal on a three dimensional space. See Fig. 7 for results

4) 3D Freebody Rotational Robot: Within this scenario, a
rectangular robot was trapped between two obstacles and the
only way to escape and reach an end goal was to rotate on a
three dimensional space. See Fig. 8 for results

—-‘

Fig. 2. Robot used in the previous scenarios

5) Arm Manipulator Translational Robot: Within this sce-
nario, the crane-like robot was tasked with translating through
multiple obstacles without rotating or changing orientation to
reach an end goal on a planar surface. See Fig. 9 for results

6) Arm Manipulator Rotational Robot: Within this sce-
nario, the crane-like robot was fixed to a location but the
arm was free to move and rotate through multiple obstacles to

reach its end goal in a three dimensional space. See Fig. 10
for results

Fig. 3. Robot used in the previous scenarios

7) Rotational Translational Car-Like Robot: Within this
scenario, a simulated robot was tasked with translating and
rotating to the end goal around a mock up of the lab we worked
in. Additionally, the simulation was mirrored by a physical
robot conducting the very same commands in the real world.

8) Reverse Car-Like Robot: Within this scenario, a simu-
lated robot was tasked with translating and rotating to the end
goal around a mock up of the lab we worked in by reversing
out of its start position, correcting itself, and moving towards
its end goal. Additionally, the simulation was mirrored by a
physical robot conducting the very same commands in the real

Fig. 4. Robot used in the previous scenarios

B. Statistics

In the simulator, when we run the tests, we are given a set
of information on how the planner performed through the test
suites. With this information, Parasol Labs will be able to have
a deeper understanding of their Motion Planning strategies to
further improve their planning techniques with a tool that is
able to simulate other variables such as collisions, forces, and
self- limitations.

In the tables following, we show information gathered
from the simulator which is an average of 10 different runs;
strategy used, number of nodes, time to solve, and final path
length.

o Strategy Used

— We used nine of the Motion Planning strategies that
Parasol Labs has in their PMPL.

— These perform differently because they are built with
different focuses.

o Number of Nodes

— This is the average number of nodes used to solve
the problem.

o Time to Solve
— This is the average time taken to solve the problem.
o Final Path Length

— This is the average distance that the robot took to
solve the problem.

As for the MAPRM results for the manipulator arm robots,
we received no results because of the increasing complexity
involved with robots with high degrees of freedom. Our
manipulator arm robot had eight degrees of freedom when
translating, and five when it was fixed. Since MAPRM has
to find the medial axis for all the degrees of freedom, this
takes an extraordinary amount of time to complete, rendering
it basically unusable.

Strategy # Nodes | Time Path Length
[PRM 21 0.139s | 76.5
Gauss 69 0.456 s | 63.4
OBPRM 122 2.69 s 67.65
MAPRM 21 0.175s | 76.5
Bridge 10 0.105 s 230.5
| TogglePRM | 83 0.766 s | 98.5
RRT 60 0.0509 s | 61.39
RRT* 300 1.22 s 61.82
.> OBRRT 250 0.342 s 87.52

Fig. 5. 2D Translational Robot Strategy Results

Strategy # Nodes | Time Path Length
PRM 412 25s 136.45
Gauss 199.8 8.6s 141.15
OBPRM 494.05 58.7s 143.05
MAPRM 247.2 103.5s 133.55
Bridge 129.6 25.2s 229.85
TogglePRM | 1353 150.74s | 169.15

RRT 1104.9 3.3s 152

RRT* 2020.2 28.9s 126.68
OBRRT 170.6 458 209

Fig. 6. 2D Freebody Rotational Robot Strategy Results

Strategy # Nodes | Time Path Length
PRM 42 0.06477 s | 107.15
Ganss 341 15.43 s 63.4
OBPRM 76 16.99 s 3.4
MAPRM 28 04953 s | 79.25
Bridge 15 5237 s 153.5
TogglePRM | 460 L.06G s 173.65

RRT 149 0.04160 s | 4.3906
RRT* 1994 21.2s 76.762
OBRRT 7.5 0.11368 s | 7.77236

Fig. 7. 3D Freebody Translational Robot Strategy Results

Strategy # Nodes | Time | Path Length
PRM 33 0.23s | 79.2
(Gauss 33.5 0.05s | 32.6
OBPRM 60.2 0.06s | 43.8
MAPRM 141.9 349 | 84.1
TogglePRM | 290.4 1.23s | 122.9
RRT T8 0.06s | 60.6
RRT* 49 0.08 | 50.7
OBRRT 50 0.08s | 63.8

Fig. 8. 3D Freebody Rotational Robot Strategy Results

Strategy # Nodes | Time | Path Length
PRM 311 18.22s | 133.70
Gauss 50.7 01.27s | 139.47
OBPRM 79.7 08.49s | 146.18
MAPRM NA NA NA

Bridge 26.8 00.92s | 137.67
TogglePRM | 87.7 00.27s | 143.47

RRT 78.6 00.27s | 006.32
RRT* 288.3 08.47s | 104.07
OBRRT 135.2 00.86s | 058.70

Fig. 9. Manipulator Translational Robot Strategy Results

Strategy # Nodes | Time Path Length
PRM 10.00 1.11540 s | 1.1

Gauss 10.80 .04402s | 1.1

OBPRM 17.90 07824 | 1.1
MAPRM 11.67 .0154 s 1.2

Bridge 10.10 13782s | 3
TogglePRM | 10.00 766 s 1.1

RRT 4.80 .00405 s | 1.581798
RRT* 7.80 01236 s | 1.03777
OBRRT 5.90 01593 s | 2.51708

Fig. 10. Fixed Manipulator Rotational Robot Strategy Results

V. CONCLUSION

To conclude this paper, we successfully created and tested
the motion planning test suite to analyze the performance
and help Parasol Labs exercise their algorithms in a range of
scenarios. With our environments, robots, and queries we have
successfully demonstrated the capabilities of the test suite and

aided fellow researchers in their future work. All of the results
from the experiments proved to be quite satisfying as the

percentage error was less than one percent, and the standard
deviation wasn’t noticeably diverging therefore validating the
results. The overall purpose of the motion planning test suite
is to have a tool for motion planning developers that will help
analyze their strategies in a realistic scenario thus allowing
them to further improve their algorithms.

VI. ACKNOWLEDGEMENTS

We want to give great thanks to the DREU, USRG, Texas
A&M, and parasol labs for hosting us this summer. We also
want to give great thanks to our mentors, Nancy Amato
and Irving Solis, alongside the many people working and
helping us in parasol labs. This research was supported by the
Department of Computer Science and Engineering of Texas
A&M University College Station.

