
Timing Errors In Floating Point Hardware

Ryan Jobson

Summer Research at Northwestern University

rjobson1@swarthmore.edu

Abstract

In the field of approximate computing, it is necessary to understand the kinds of errors that occur

in the computation process. Understanding where errors are occur in hardware gives a better

picture on how to generate accurate results. In addition, discounting known failure points can

give give better guarantees on the accuracy of others. Finally, tradeoffs between power and

reliability are now possible. To address these problems and advance the field of approximate

computing, it is important to collect actual data on the failure rates of hardware. Focusing a

single piece of hardware, a floating point unit or FPU, error rates were collected. In this study,

error rates were different based on the operation (Addition, Subtraction, Multiplication...) and

error occurred more frequently in different bit locations. Understanding these results will help to

build more accurate as well as more consistent approximate hardware.

Introduction

Tracking error rates is an important step in building better approximate computers. Knowing

where errors occur, and how likely they are to occur, will allow for more reliability and accuracy

of results, while still utilizing lower power.

IEEE Floating Point

In 1985, in attempt to simplify the issues of floating point, the Institute of Electrical and

Electronics Engineers developed a standard for representing floating point numbers. This

standard has been adopted by all processors on the market. In addition to defining formats for

arithmetic, the standard also includes rules on different forms of rounding. It is no surprise, then

that the FPU chosen for this research conforms to the standard. However, it is first important to

understand how floating point numbers are represented in computing hardware.

Generally, programming languages today include a floating point data type. This data type is

used to represent both very large and very small numbers, with differing levels of precision. This

is possible through the use of scientific notation. For example, the number 43.314 could be

represented in scientific notation as . However, this methodology must be altered,

due to the fact that computer hardware works only in binary. Therefore, the number must be

represented in base two. Using a similar example, the number 4.5 in base ten, converted to binary

would be 100.1 in base two, which could also be represented as in scientific notation.

In most floating point implementations, the bit width is 32, meaning that 32 bits are used to

represent a single value. These bits can be broken into three distinct parts: Sign, Exponent, and

Mantissa. Only one bit is reserved for the sign, where the sign bit of one represents a negative

value while a zero represents a positive value. The next eight bits represent the exponent in base

two. Finally, the remaining 23 bits are reserved for the mantissa, which represents all of the

digits after the decimal point. In summary, the format can be represented as:. However, this

presents a problem, how can numbers smaller than one be represented? The solution to this

problem, is to subtract what is known as a bias from the exponent. For the 32 bit architecture,

127 is subtracted from the exponent. Therefore, there is a maximum value of 2127 and a

minimum of 2-127 that can be represented in this standard. In conclusion, numbers in the

IEEE-754 standard can be represented as such: -1^(Sign Bit)* 1.{Mantissa} * 2^(Exponent -

Bias). These variables can and will also be changed to work with other implementations, such as

the 64 bit and 16 bit FPU for this research.

Building the Infrastructure

As a starting point, an open source Floating Point Unit was used. Recommended by my advisor,

the code provided included a well tested Verilog code for a 32 bit (Single Precision) FPU.

However, the last update to the code was in 2001, over 15 years ago. As such, the provided

testbench and test vector generation did not work. In addition, for our experiment, there needed

to be a way to do 64 bit (Double Precision) and 16 bit (Half Precision) calculation as well.

Consequently, the provided source needed to be modified.

4.3314 * 101

1.001 * 22

The base FPU flow can be broken into a three stage process: A prenormalization phase, the

calculation phase, and the post normalization phase. The prenormalization can be further broken

into two distinct processes, one for addition and subtraction, and the other for multiplication and

division. For the addition and subtraction pre normalization process, the two operands: a and b,

are modified so that they share the same exponent. This can be accomplished by shifting the

mantissa of the smaller operand by the

difference of the two exponents. Additionally,

overflow, underflow and other errors are

checked as well. The pre normalization

process for multiplication and division are

much simpler, where only errors are checked.

Next, the actual operation occurs. Finally, in

the shared post normalization process, the

final result is converted to its simplest form,

checked for errors, and outputted. In parallel,

the exceptions block will check for any errors

that occur during runtime. This entire process

completes from start to finish in four cycles. As a benefit

of its modular design, every stage is pipelined, so the FPU can be given new inputs every clock

cycle. To fit our research specifications, this hardware needed to be modified.

Over the course of a few weeks, the original design was modified, line by line, to fit the research

specification. In the Verilog netlist, all of the hardcoded values were parameterized to fit for

different bit widths. In addition, some of the logic in the pre and post normalization processes

were modified. Once the Verilog was changed, the different FPUs needed to be tested. A testing

framework was developed in Python to generate test vectors, as well as verify the outputs. In

addition, Working in the IEEE-754 standard meant that all values were represented in binary. For

readability and ease of use, all values were converted to hexadecimal values. Additionally,

another script was developed for floating point conversion. Once the functionality was

thoroughly tested, gate level synthesis could occur.

Figure 1: FPU Pipeline

To understand how the floating point unit would behave in the real world, a gate level synthesis

of the Verilog code needed to occur. This process simplifies the entire design down to basic

gates. However, in this process, division could not be synthesized without adding sizable area to

the chip, as well as adding more complex logic to the design. Unfortunately, the division

operation had to be removed from the design. Once the gate level design synthesized, analysis on

timing could be run. The gate level design, consisting of only basic gates, had information on the

delays of every component in the design. Timing errors, where data arrives to a gate after a full

clock cycles, could be located. Once the timing reports were generated, the infrastructure

necessary to run the experiment was constructed.

Figure 2: Test Bench Waveform

Collecting Data and Final Results

Conducting the experiment after building the infrastructure was simple. A script would run

generating an FPU and running a test vector at a given clock frequency, then the error rate would

be recorded. Building upon that, error rate vs. clock frequency could be plotted. Running this,

however, took a very long time to compile. After many days of processing, the error rates of both

32 bit and 64 bit FPU were calculated. In addition, a more detailed experiment was run, tracking

exactly which category (sign, exponent or mantissa) was failing the most.

Figure 3: 32 Bit FPU Error Rates Figure 4: 64 Bit FPU Error Rates

Conclusion

Tracking error rates is an important step in building better approximate computers. Knowing

where errors occur, and how likely they are to occur, will allow for more reliability and accuracy

of results, while still utilizing lower power. Over the past 10 weeks, An infrastructure was built

for synthesizing floating point units for a variety of bit widths, as well as a testing framework to

verify the results. The results achieved can be used in the process of building better hardware.

Future Work

In addition to fixing the 16 bit architecture, pipeline depth can also be modified and tested, which

might also have an effect on the error rate.

Acknowledgements

I would like to thank the DREU program for giving me this wonderful opportunity to study at

Northwestern. I would like to thank Dr. Russ Joseph for guiding me through the project, being a

mentor, and showing me around Chicago. I would also like to thank Professor Jie Gu as well as

graduate students: Tianyu Jia and Yuanbo Fan, for help in the debugging process.

Figure 5: 32 Bit FPU Error Locations

Citations

IEEE Standards Committee. "754-2008 IEEE standard for floating-point arithmetic." IEEE

Computer Society Std 2008 (2008).

Overton, Michael L. Numerical computing with IEEE floating point arithmetic. Society for

Industrial and Applied Mathematics, 2001.

Han, Jie, and Michael Orshansky. "Approximate computing: An emerging paradigm for energy-

efficient design." Test Symposium (ETS), 2013 18th IEEE European. IEEE, 2013.

