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Abstract 

In the field of approximate computing, it is necessary to understand the kinds of errors that occur 

in the computation process. Understanding where errors are occur in hardware gives a better 

picture on how to generate accurate results. In addition, discounting known failure points can 

give give better guarantees on the accuracy of others. Finally, tradeoffs between power and 

reliability are now possible. To address these problems and advance the field of approximate 

computing, it is important to collect actual data on the failure rates of hardware. Focusing a 

single piece of hardware, a floating point unit or FPU, error rates were collected. In this study, 

error rates were different based on the operation (Addition, Subtraction, Multiplication...) and 

error occurred more frequently in different bit locations. Understanding these results will help to 

build more accurate as well as more consistent approximate hardware. 

Introduction 

Tracking error rates is an important step in building better approximate computers. Knowing 

where errors occur, and how likely they are to occur, will allow for more reliability and accuracy 

of results, while still utilizing lower power.  

IEEE Floating Point  

In 1985, in attempt to simplify the issues of floating point, the Institute of Electrical and 

Electronics Engineers developed a standard for representing floating point numbers. This 

standard has been adopted by all processors on the market. In addition to defining formats for 

arithmetic, the standard also includes rules on different forms of rounding. It is no surprise, then 

that the FPU chosen for this research conforms to the standard. However, it is first important to 

understand how floating point numbers are represented in computing hardware. 



Generally, programming languages today include a floating point data type. This data type is 

used to represent both very large and very small numbers, with differing levels of precision. This 

is possible through the use of scientific notation. For example, the number 43.314 could be 

represented in scientific notation as . However, this methodology must be altered, 

due to the fact that computer hardware works only in binary. Therefore, the number must be 

represented in base two. Using a similar example, the number 4.5 in base ten, converted to binary 

would be 100.1 in base two, which could also be represented as  in scientific notation.  

In most floating point implementations, the bit width is 32, meaning that 32 bits are used to 

represent a single value. These bits can be broken into three distinct parts: Sign, Exponent, and 

Mantissa. Only one bit is reserved for the sign, where the sign bit of one represents a negative 

value while a zero represents a positive value. The next eight bits represent the exponent in base 

two. Finally, the remaining 23 bits are reserved for the mantissa, which represents all of the 

digits after the decimal point. In summary, the format can be represented as:. However, this 

presents a problem, how can numbers smaller than one be represented? The solution to this 

problem, is to subtract what is known as a bias from the exponent. For the 32 bit architecture, 

127 is subtracted from the exponent. Therefore, there is a maximum value of 2127 and a 

minimum of 2-127 that can be represented in this standard. In conclusion, numbers in the 

IEEE-754 standard can be represented as such: -1^(Sign Bit)* 1.{Mantissa} * 2^(Exponent - 

Bias). These variables can and will also be changed to work with other implementations, such as 

the 64 bit and 16 bit FPU for this research. 

Building the Infrastructure 

As a starting point, an open source Floating Point Unit was used. Recommended by my advisor, 

the code provided included a well tested Verilog code for a 32 bit (Single Precision) FPU. 

However, the last update to the code was in 2001, over 15 years ago. As such, the provided 

testbench and test vector generation did not work. In addition, for our experiment, there needed 

to be a way to do 64 bit (Double Precision) and 16 bit (Half Precision) calculation as well. 

Consequently, the provided source needed to be modified.  
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The base FPU flow can be broken into a three stage process: A prenormalization phase, the 

calculation phase, and the post normalization phase. The prenormalization can be further broken 

into two distinct processes, one for addition and subtraction, and the other for multiplication and 

division. For the addition and subtraction pre normalization process, the two operands: a and b, 

are modified so that they share the same exponent. This can be accomplished by shifting the 

mantissa of the smaller operand by the 

difference of the two exponents. Additionally, 

overflow, underflow and other errors are 

checked as well. The pre normalization 

process for multiplication and division are 

much simpler, where only errors are checked. 

Next, the actual operation occurs. Finally, in 

the shared post normalization process, the 

final result is converted to its simplest form, 

checked for errors, and outputted. In parallel, 

the exceptions block will check for any errors 

that occur during runtime. This entire process 

completes from start to finish in four cycles. As a benefit 

of its modular design, every stage is pipelined, so the FPU can be given new inputs every clock 

cycle. To fit our research specifications, this hardware needed to be modified. 

Over the course of a few weeks, the original design was modified, line by line, to fit the research 

specification. In the Verilog netlist, all of the hardcoded values were parameterized to fit for 

different bit widths. In addition, some of the logic in the pre and post normalization processes 

were modified. Once the Verilog was changed, the different FPUs needed to be tested. A testing 

framework was developed in Python to generate test vectors, as well as verify the outputs. In 

addition, Working in the IEEE-754 standard meant that all values were represented in binary. For 

readability and ease of use, all values were converted to hexadecimal values. Additionally, 

another script was developed for floating point conversion. Once the functionality was 

thoroughly tested, gate level synthesis could occur. 

Figure 1: FPU Pipeline



To understand how the floating point unit would behave in the real world, a gate level synthesis 

of the Verilog code needed to occur. This process simplifies the entire design down to basic 

gates. However, in this process, division could not be synthesized without adding sizable area to 

the chip, as well as adding more complex logic to the design. Unfortunately, the division 

operation had to be removed from the design. Once the gate level design synthesized, analysis on 

timing could be run. The gate level design, consisting of only basic gates, had information on the 

delays of every component in the design. Timing errors, where data arrives to a gate after a full 

clock cycles, could be located. Once the timing reports were generated, the infrastructure 

necessary to run the experiment was constructed.   

 
Figure 2: Test Bench Waveform 

Collecting Data and Final Results 

Conducting the experiment after building the infrastructure was simple. A script would run 

generating an FPU and running a test vector at a given clock frequency, then the error rate would 

be recorded. Building upon that, error rate vs. clock frequency could be plotted. Running this, 

however, took a very long time to compile. After many days of processing, the error rates of both 

32 bit and 64 bit FPU were calculated. In addition, a more detailed experiment was run, tracking 

exactly which category (sign, exponent or mantissa) was failing the most.  

Figure 3: 32 Bit FPU Error Rates Figure 4: 64 Bit FPU Error Rates



 
Conclusion 

Tracking error rates is an important step in building better approximate computers. Knowing 

where errors occur, and how likely they are to occur, will allow for more reliability and accuracy 

of results, while still utilizing lower power. Over the past 10 weeks, An infrastructure was built 

for synthesizing floating point units for a variety of bit widths, as well as a testing framework to 

verify the results. The results achieved can be used in the process of building better hardware.  

Future Work 

In addition to fixing the 16 bit architecture, pipeline depth can also be modified and tested, which 

might also have an effect on the error rate.  
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Figure 5: 32 Bit FPU Error Locations



Citations 

IEEE Standards Committee. "754-2008 IEEE standard for floating-point arithmetic." IEEE 

Computer Society Std 2008 (2008). 

Overton, Michael L. Numerical computing with IEEE floating point arithmetic. Society for 

Industrial and Applied Mathematics, 2001. 

Han, Jie, and Michael Orshansky. "Approximate computing: An emerging paradigm for energy-

efficient design." Test Symposium (ETS), 2013 18th IEEE European. IEEE, 2013. 


