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Abstract— Motion planning is the problem of finding a
collision-free path for a robot from a start to goal configuration.

State of the art techniques rely on sampling- based planning
which samples and connects configurations until a valid path is
found. Although most of these methods have been kept strictly
computational, we implemented motion planning to physical
robots to demonstrate their efficiency in real world scenarios.
In ”A Machine That Learns” by W. Grey Walter, he used light
in his experiments with similar robots as a means to get the
machine to perform a certain task. In this work we explore a
new method for physical robots, allowing them to push boxes
from an initial to a final position. Our novel method allows the
robot to read pre-coded markers, which contain a set of data
specifying the location in the global map there are supposed
to be in. In our experimental results, we saw that the final
position the robot left the box in was well within an acceptable
margin of error. Additionally, the robot was completing the task
ninety-six percent of the time.

I. INTRODUCTION

The world we live in is constantly changing; we construct

and destroy buildings every day. We began using machines to

assist in construction and demolition projects because robots

doing the heavy lifting improves efficiency and reduces the

chances of human casualties.as they proved to be extremely

helpful and much more efficient than men. With this in

mind, we wanted to create something similar to affect the

construction industry in the future. Before this can happen,

a great amount of work has to be put towards making this

possible. One key aspect of making this construction robot

efficient and reliable is to make sure it follows instructions

and executes them precisely.

Having precise machines involves a great deal of planning

prior to having the robot do what it is told. These vehicles

simplify the problem of navigation by restricting their paths

to predertermined routes. [1] This is why we use motion

planning to assist the process of finding the best path for

the robot. The state of the art solution to this problem

is sampling-based planning, which generates a roadmap of

valid configurations and then extracts the best path from start

to end. Most planners are only designed for use in robots

with no motion contraints, but a monotonal forward and turn

speed. Additionally, these robots only move in straight lines

which makes the computational planning less complicated.

Fig. 1. Virtual Environment of lab

In this work, we were tasked with coming up with a

construction site system of robots that pushed boxes from

a depot to a construction site. The machines also switched

out whenever their battery was running low. Although we

were unable to reach the ultimate goal of the project, our

results were excellent and we plan to pursue any future work

possible in this field of research.

II. RELATED WORK

In this section, we address related work that is most

relevant with our project.

A. Localization

Localization is the problem of determining the position

of a mobile robot from sensor data. [2] In our case, we

used the laptop’s camera as a means to localize. It was

extremely important for us to be able to localize so that

communication between the robot and the virtual planner

collaborated together. Initially, we were localizing the robot

on a global coordinate plane, which was causing us problems.

Instead, we switched to localizing the robot locally which

was much more accurate. It localizes itself by looking at the

markers around it, which have their unique location in the

environment. The robot then calculates where it is. Much

work has gone into good localization algorithms as the ones

described in Active Markov localization for mobile robots.
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B. Robot Navigation

There have been many Autonomous Robot Navigation

papers that describe the work that has been put in towards

properly implementing robot navigation. Some of the robots

already being used to test autonomous navigation have been

designed for use in a structured office or factory environment.

These robots face a significant restriction, as compared

to others designed for outdoor use. Nonetheless, they still

apply to many potential applications. Robot navigation in

our experiment was a large portion of the project. Our job

was to get the robot to move from one place to another;

without proper navigation methods, the robot would have

never completed the task we wanted it to complete.

Fig. 2. Some of the markers that were set throughout the environment

III. MAIN METHOD

Our method consists of using the law of cosines and basic

trigonometry to find the h, y and m values, which hold the

vertical distance to the box, the angle that the robot must

turn to be parallel to the face of the box, and the horizontal

distance to the center of the box, respectively. This allows

the robot to accurately compute where it should move to be

centered with the object.

• Able to successfully acuire data from the markers r.g.,

position of marker, and distance and angle to the robot

• Robot can successfully push a box forward a given

distance with a margin of error under 5%

• Robot can accurately compute the distance between two

markers and wall

• Robot uses trigonometric functions to center itself in

front of the box, facing towards it

When the robot reads a marker, it gets information about the

marker e.g. x position, y position, and marker orientation.

This helps the robot localize itself in its environment. [3]

Once the robot reads the information, the marker has pre-

coded instructions that the robot will follow. We are able to

push a box any given distance with precision.

IV. EXPERIMENTAL ANALYSIS

We wanted to see how our results varied with several dif-

ferent factors in the picture. We had two sets of experiments:

one focused on the centering function and one that studied

the effects of a plow on the robot.

Algorithm 1 Algorithm

Input: Environment env, dist

Output: Box Pushing mvmt

1: map← markerInfo

2: rotate 180

3: map← markerInfo

4: return pushDist and dist

5: LocateboxMarkers

6: calculate m,h,&Y

7: Rotate Y to align

8: Move to center

9: Rotate 90

10: Push box dist

A. Setup

The methods were all implemented in a C++ motion

planning library developed in the Parasol Lab at Texas A&M

University. It uses a distributed graph data structure from

the Standard Template Adaptive Parallel Library (STAPL), a

C++ library designed for parallel computing. All experiments

were run on Dell Optiplex 780 computers running Cent OS

with Intel Core 2 Quad CPU 2.83 GHz processors with the

GNU gcc compiler version 4.7.

Additionally, all experiments were conducted in Parasol

Laboratory with boxes made from recycled cardboard. The

IRobot Create’s connection with desktops were made pos-

sible by ASUS Eee PC computers running Fedora 23 with

Intel Atom CPU 1.60 GHz processors.

Fig. 3. Create robot with mini laptop mounted on top

For our experiments we set a total of 158 markers through-

out the environment and boxes. There was a marker put

in every corner of our lab, and two on each side of every

box. Each marker had a unique marker ID, and they were

individually measured from the origin to get their x & y

coordinates and marker orientation. Their information was

inserted into a C++ map for easy retrieval of information and

instructions. The robot had an ASUS Eee PC mounted on top

which was in charge of seeing the markers and sending back

their information. We finally created a virtual environment

as a representation of our lab where the planning and

experiments took place.

The virtual environment we created is shown in Figure 1.
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• 2D Environment (Figure 1):

– Red boxes are offices

– Blue boxes are tables and desks

– Grey box is a counter

– Green boxes are shelves

– Light blue boxes are drawers

– Purple Box is our lab’s trash can

– Environment was created to scale of actual lab

B. Results

For our first experiment, we tested how well the robot

was able to center itself with a given tolerance level. The

tolerance level is the maximum error allowed by the robot

before it considers itself to be centered. We calculated this

by finding where the robot should be and where it actually is.

This gave us the &Error. We found that the best performing

tolerance level that we tested was 0.25 because it balanced

hardware error from too many movements and software error

from too little adjustment.

We were also tasked with getting the robot to dock by

itself whenever it was running on low battery. We had a

docking device that emitted three different infrared signals;

we were able to decifer which was in the left, center and

right. Depending on where the robot was, it would move

accordingly to the center of the docking device, and move

forward until it docked itself. We were glad this system of

docking had proper functionality.

Fig. 4. Shows results of tests with no plow

In the second experiment, we ran 130 iterations in total

comparing the robot with the plow against the robot without

one. There were 10 iterations for each of the 0.15 & 0.30

tolerance levels and 15 for each other tolerance level. We

expected to see that a lower tolerance would yield less

&Error, which seemed only reasonable. However, there was

an unexpected inverse relationship between the tolerance and

error. For the levels on the stricter side we saw multiple hard-

ware issues arise because of increased minute adjustments.

On the more relaxed side, our expectations were fulfilled

when we saw that the planner compromised accuracy to save

time. The optimal level of .25m was the best because it found

the balance between speed and accuracy. Another important

observation was that the X error was much less on the robot

with the plow than on the robot without a plow. Because the

X direction was addressed second when pushing a box in

two dimensions in our program, a lower X error meant that

the robot translated the box while rotating it very little in

the Y direction.This proves that the plow mitigates error by

limiting rotation when the robot is not perfectly centered.

Fig. 5. Shows results of tests with a plow

V. DISCUSSION

Our experiment demonstrates that a robot with a plow

increases the precision of the box placement and decreases

the time taken to complete the task. The findings clearly

suggest that a plow is beneficial for a robot to execute the

task precisely. Since we just scratched the surface of this

project’s true potential, any further implementation of our

algorithm in more complex environments will be left to

future work.

Fig. 6. Shows results of centering tests

VI. CONCLUSION

In this paper, we introduced a method for robots to assist

in manipulating an environment e.g., pushing boxes from a

start to a goal. We were able to allow the robot to localize

itself, push boxes and dock so that it can recharge itself

whenever it is running low on battery. We also found that

performance was improved by adding a plow and refining

the tolerance level.
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