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Introduction to Ligand Binding

Ligand Binding process
e A ligand (drug) binds to a specific pocket on a protein
e Stable reaction between atoms of both ligand and protein

Application
e Analyzing the efficiency of drug molecules, by how they bind to proteins
(enzymes) in the body.

Problem
e Given a ligand and protein, predict ligand binding sites on the protein surface.

Motion Planning

Given an environment: robot, obstacles, start and goal configurations, find a
valid collision-free path between start and goal configuration
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Application to ligand binding
e Robot: ligand (linkage)

e Obstacle: protein (rigid body)
e (Certain metrics: whether a path exists to a configuration

goal obstacles

Generates samples uniformly
around the obstacle

e Desirable because binding pockets
are on protein surface

Generating 1000 samples around an
obstacle using UOBPRM

Machine Learning

“A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.” -- Tom Mitchell, Carnegie Mellon
University

e E: proteins and ligands with known binding sites

e T: predicting binding sites on a new protein for which real sites are
unknown

e P: accuracy of prediction based on metrics

Binding
— pocket
location

We calculate a set of metrics for each sample generated by the motion planning
sampler in order to train a machine learning algorithm.

Distance to Center of Mass

e Distance between the center of
mass of the ligand and protein

e (General measure of how close the
sample is, not necessarily whether
IS IS in a binding pocket

Energy

e Levitt energy function with van der
Waals constants

e Calculate average energy between
ligand COM and all N, Ca, and C
atoms of the protein
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Protein’s center of mass
where A and B are van der Waals constants

depending on the atom type and r Is the
distance between the ligand center of mass
and given protein atom

Binding pockets are
usually closer to protein’s
center of mass

Generation of 1000 samples shown in point mode
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Uniform Random Sampler Obstacle-Based PRM

Uniform Obstacle-Based PRM

e UOBPRM uniformly distributes samples around the surface of the protein

Sample test results with 3W6H Protein and Zn ligand

Depth score using convex hull
e How much of the ligand surface is buried in the protein?
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Generate samples with Make a convex hull for protein Assign scores to samples based

UOBPRM on collision with convex hull
e Samples not covered get a score of O
e Samples partially covered get a score of 1
e Samples fully covered get a score of 2
e The distance from each sample to the surface of the convex hull is returned as

a measure of clearance.

Example metrics output for 3 samples

VID COM Distance Energy value IsValid InsideObst Penetration Site score

0 41.920 -0.00000084171298 0 1 -0.0000000 2
9 51.208 -0.00000000151420 0 0 0.0000000 1
15 54.944 -0.00000004566106 1 0 1.8482726 0

METRICS Best/Worst COM Distance Best/Worst ENERGY Best/Worst DEPTH SCORE
Best Worst Best Worst Best Worst
COM Distance 3.2377 41.3307 34.888 28.033 15.751 34.645
ENERGY 6.42e-2 -2.85e-4 -3.99e-8 2.62e7 3.03e-4 -4 .28e-8
DEPTH SCORE 1 1 2 1 2 0
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e Depth score is more vulnerable to noise.
e Locations with good energy might not be reachable by the ligand
e Distance to center of mass relies on the shape of the protein

o Usually more helpful for bulk shaped proteins

e No single metric accurately predicts the binding site

o Favorable energy tends to occur farther away from the protein center of
mass.

o Depth score is usually good for many samples

e Necessity for machine learning to take advantage of strengths and
weaknesses of individual metrics

e UOBPRM provides a better chance of covering possible binding pockets due
to uniformity in sampling

e More accurate way of representing complex ligands in our environment
e Training data collection for machine learning
e More metrics to be computed and used in machine learning

Acknowledgment

This research supported in part by NSF awards CNS-0551685, CCF-0702765, CCF-0833199,
CCF-1439145, CCF-1423111, CCF-0830753, 11S-0916053, 11S-0917266, EFRI-1240483,
RI-1217991, by NIH NCI R25 CA090301-11,and by DOE awards DE-AC02-06CH11357,
DE-NA0002376, B575363.

The work of Enem, Porter performed at the Parasol Lab during Summer 2016 and supported in
part by the CRA-W Distributed REU (DREU) project.

References

[1] H. Y. (Cindy), S. L. Thomas, D. Eppstein, and N. M. Amato. UOBPRM: A uniformly distributed
obstacle-based PRM. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pages 2655-2662, 2012.
[2] J. C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and other
artifacts. Int. Journal of Robotics Research, 18(11):1119-1128, 1999.

[3] M. Levitt. Protein folding by restrained energy minimization and molecular dynamics. J. Mol.
Biol., 170:723-764, 1983.



