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Abstract— Many approaches to predicting ligand binding sites
on protein surfaces suffer from a reliance on unreliable and
inaccurate evaluations of potential binding sites. In this work,
we propose an approach to ligand binding that takes advantage
of the motion planning paradigm of randomized sampling to
uniformly generate samples of the ligand at various binding site
candidates near the protein surface. We then compute metrics
that describe the favorability of each configuration’s location as
a potential binding site. We also propose future work to apply
these metrics to a machine learning algorithm to take advantage
of each metric’s strengths and weaknesses and reliably predict
the locations of binding sites for ligands on proteins.

I. INTRODUCTION

Ligand binding is the process by which a ligand (drug) binds
to a specific pocket on a protein, where its atoms can create a
stable reaction with the atoms of the protein, called a binding
site. This process is useful in analyzing the efficiency of drug
molecules. Ligands must be both shaped in a way that will
make interactions with the protein easy and must react in an
energetically favorable way.

In this work, we use motion planning sampling to create
samples of the ligand around the protein. The locations of
these samples are initially considered to be possible binding
sites for the ligand. We then compute metrics that further
narrow the possibilities of the locations of binding pockets.

Our research focuses on computing metrics that are used
when given a set of input (ligand and protein) to predict
ligand binding sites on the protein body. We also suggest an
application for these metrics to a machine learning approach
to more consistently predict possible binding sites based on
the strengths and weaknesses of specific metrics.

II. RELATED WORK

A. Motion Planning

Motion planning is a problem that has many applications
to our world, from computer animations to robotic medical
procedures and protein folding and ligand binding simulations.
Its basic premise is to find a valid path from a start to a
goal configuration, given an environment and descriptions of
moveable objects (robots) and obstacles. The robot attempts to
reach the goal configuration while avoiding collisions with the
obstacles. Although this problem seems deceptively simple,
it gets increasingly difficult as we introduce more restraints
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Fig. 1. 2D Maze: The robot must traverse from the lower left corner (in
red) to the upper right corner (in blue) of the environment.

and degrees of freedom to the robots. Except for robots with
very few degrees of freedom, the problem is computationally
hard [5]. In modeling protein folding, the robot often has
many degrees of freedom, making computations particularly
difficult.

We make use of a randomized sampling algorithm
(UOBPRM) to generate our ligand samples around the protein.
We do not use the usual next step in motion planning,
the probabilistic roadmap (PRM), which is constructed by
connecting the configurations using a local planner [4]. Our
project just makes use of the sampling mechanism of PRMs.
However, some future work could be done with PRMs in the
form of metrics that take into account whether a configuration
generated with our method is actually reachable from the
exterior of the protein. In this project, we model the ligand as
a linkage and the protein as a rigid obstacle in the environment
in the motion planning environment.

Fig. 2. UOBPRM: Generation of 2,500 samples shown in point mode around
the 4RRW protein



1) Uniform Obstacle-Based PRM (UOBPRM): In generat-
ing samples around an obstacle, the Uniform Obstacle-Based
PRM (UOBPRM) guarantees a uniform distribution of samples
near C-obstacle surfaces [3]. UOBPRM has been demonstrated
to have a better node distribution around C−obst than the
Obstacle-Based PRM (OBPRM) [1], and also better proximity
of the samples to the obstacle than the uniform random
sampling method. In order to identify binding pockets on a
protein body, our generated ligand samples have to be both in
close proximity to the protein body and uniformly distributed
around the protein so that all possible areas of the protein
surface are considered.

B. Machine Learning

Tom Mitchell of Carnegie Mellon University defines ma-
chine learning as follows: A computer program is said to
learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured
by P, improves with experience E.

We hope to apply the metrics generated by our strategy
to a machine learning algorithm, particularly a neural nework
where the metrics are supplied as features. The training phase
consists of running the algorithm with ligand/protein sets
for which the true binding sites are known in order to take
advantage of the strengths of the metrics in different situations.
Next, the algorithm would be tested on ligand/protein sets
for which it does not know the true binding site location to
measure its accuracy.

The two main types of supervised machine learning ap-
proaches are regression systems, which return a confidence
measure on a spectrum of possible responses, and classification
systems, which return a simple yes or no prediction. We
propose a regression system to return a measure of likelihood
for each sample to be located within a binding pocket.

III. OVERAL APPROACH

In this work, we first generate samples with the randomized
sampling method UOBPRM, then calculate metrics for each
sample using a motion planning strategy. Finally, we propose
future work to apply these metrics to a machine learning
algorithm to greatly improve its planning capability by tak-
ing into account the different metrics’ strengths in different
circumstances.

A. Studied Metrics

In order to overcome the difficulties of successfully predict-
ing ligand binding sites using traditional methods, we calculate
a variety of metrics which describe characteristics of each
sample, such as how close to or buried it is in the protein
or the energy of the configuration according to van der Waals
interactions. We also present future work in integrating the
strengths and weaknesses of each metric in a machine learning
approach.

Algorithm 1 AnalyzeStrategy to calculate metrics for each
sample
Input. map: file containing all samples generated by

UOBPRM
Output. Metrics for use with machine learning algorithm

for each sample ∈ map do
metrics← sampleID
metrics← Distance(sampleCOM , P roteinCOM )
metrics← Energy(sample, ProteinAtomCoordinates)
metrics← ConvexHullScore(sample)
metrics← PQPSolidPenetrationDepth(sample)

end for
return metrics

1) Distance to the Center of Mass: The first and simplest
metric that we calculate is the distance between the center
of mass of the protein and the center of mass of the ligand
sample. The distance to the center os mass is usually lower
for samples which are buried in pockets on the protein surface
(Figure 3). This calculation is a normalization of the resultant
of subtracting two vectors which represent the coordinates in
3D space of the protain and ligand center of masses. Although
binding pockets are generally located relatively close to the
center of mass of the protein, this metric alone is not sufficient
to determine the presence of a site.

Fig. 3. Distance to COM: Showing distances of genrated samples to protein’s
center of mass (marked X).

2) Energy: We calculate the energy of each configuration
using the equation proposed by Levitt in [6]. This equation
accounts for the average energy between each pair rij of the
ligand center of mass and a nitrogen, calcium, or carbon atom
from the protein. In our calculations, we ignore the value of
the hydrophobic interactions.

TABLE I
VAN DER WAALS CONSTANTS FOR DIFFERENT ATOMS

Atom A B

N 395280 2556
Ca 3075695 953
C 1200965 425



Fig. 4. The Levitt energy equation

U =
∑

atompairi,j

A/r12ij −B/r12ij + Ehydrophobic

Algorithm 2 Energy

Input. ligand: the configuration to calculate energy for,
atoms: a vector containing the x,y,z coordinates of all N,
Ca, and C atoms of the protein

Output. The average energy of the configuration
energy ← 0
for each atom ∈ atoms do
rij ← Distance(atom, ligandCOM )
set values of van der Waals constants A and B
energy = energy +A/r12ij −B/r6ij + Ehydrophobic

end for
return Average(energy)

3) Convex Hull Clearance and Penetration Scores: Another
metric we computed was which samples are buried in cavities
on the protein body, and how deep the samples are buried in
those cavities. To implement this, we created a convex hull
around the protein body and determined samples that were in
collision with the convex hull.

Samples that are not covered by the convex hull were
assigned a score of 0, samples partially covered are assigned
a score of 1, and samples fully covered are assigned a score
of 2 (Figure 5). The greater the score assigned to a sample,
the more likely the location of the sample is to be a binding
pocket. The distance of each sample to the body of the convex
hull is computed as a depth value. For samples fully covered
by the convex hull, this value is negative. For samples partially
covered, the value is 0. For samples outside the convex hull,
the depth value is computed as a positive value.

IV. EXPERIMENTS

We ran two sets of experiments to verify our choice of
UOBPRM as the optimal sampling method for our approach
and to gain insight into how our well our metrics agree with
one another, respectively.

A. Sampling method comparison

To verify our choice of sampling method, we generated
1,000 nodes using uniform random sampling (UniformRan-
domFree), obstacle-based sampling (OBPRM), and uniform
obstacle-based sampling (UOBPRM). When comparing the
output, UOBPRM clearly produces a uniform distribution
around the obstacle surface, which is most desirable for
locating binding pockets.

B. Measure of confidence in metrics

To get a measure of confidence for our metrics, we ran
tests on the 3W6H protein and the Zn2+ ligand using our
implemented metrics.

Samples buried in pockets of proteins are more likely to
have lower distances to the protein’s center of mass than most

TABLE II
AVERAGE DISTANCE TO NEAREST NEIGHBOR NODE FOR 1,000 SAMPLES

Sampler Distance

UniformRandomFree 11.5491
OBPRM 2.1958
UOBPRM 2.2102

other samples. Although the distance metric is meant to take
this into consideration, it is only helpful for bulky shaped
proteins. For linear shaped proteins, this metric would not be
as useful.

For this experiment, our energy function may have suffered
from inaccuracies because we did not consider hydrophobic
interactions, substituting a zero for their value. The energy
function was therefore dependent only on the distance between
the ligand and the atoms of the protein.

The binding site scores from the convex hull exhibit little
variation among the samples generated because the convex
hull metric only considers collisions betweeen the samples
and the convex hull of the protein and because there are only
three possible scores, causing the same scores to be reported
for large number of samples. This metric only takes into
account the geometric properties of the protein when assigning
scores to samples, so it is also not very useful on its own in
identifying a binding site on a protein for a specific ligand.

V. RESULTS

We ran tests which generated 1,000 samples around the
3W6H protein using three different samplers (Uniform Ran-
dom, Obstacle-Based PRM, and Uniform Obstacle-Based
PRM). The purpose of these tests was to determine the best
sampling method for our project. The results can be seen
in table II. While uniform random free sampling produces
a distribution with a large distance between neighbor nodes,
OBPRM and UOBPRM produce much smaller and closer
average distances. Because UOBPRM’s value is smaller, it
suggests that it exhibits slightly more clumping in its node
distribution, making UOBPRM the optimal choice.

The uniform random sampler generated samples uniformly
in the environment, but far away from the protein body (Figure
6). The obstacle-based sampler generated samples close to the
protein. Although the close proximity to the protein is useful
for this project, OBPRM oftens generates samples clustered on
parts of the protein, leaving some parts uncovered (Figure 7).
The uniform obstacle-based sampler generated samples which
are both close to the protein and uniformly distributed around
the protein body (Figure 8). These results demonstrate that
UOBPRM is the best choice for our sampling method.

Our distance metric relies on the geometry of the protein
body. It proves to be more useful for bulk shaped proteins. For
other irregular shaped protein bodies (e.g linear), the distance
metric would not be as useful. This is due to the fact that
the cavities on the surface of the proteins would be smaller
for linear shaped proteins. Also, the distance from the center



Fig. 5. Convex Hull Generation: Showing the process of generating the convex hull and assigning scores to samples.

TABLE III
BEST AND WORST CASE SAMPLES FOR ALL METRICS WITH 3W6H PROTEIN AND Zn2+ LIGAND

Metrics Best/Worst COM Distance Best/Worst Energy Best/Worst Depth

Best/Worst Best Worst Best Worst Best Worst
COM Distance 3.2377 41.3307 34.888 28.033 15.751 34.645
Energy 6.42e-2 -2.85e-4 -3.99e-8 2.62e7 3.03e-4 -4.28e-8
Depth Score 1 1 2 1 2 0

Fig. 6. Uniform Random Sampler node generation in point mode: 1000
samples are randomly generated in the environment and far from the protein
body.

Fig. 7. Obstacle-Based Sampler node generation in point mode: 1000 samples
are generated close to the obstacle but clustered on one side, leaving some
parts of the protein uncovered.

Fig. 8. Uniform Obstacle-Based Sampler node generation in point mode:
1000 samples uniformly generated around the protein surface.

of mass would be larger due to the length of longer linear
proteins.

Since we do not take the hydrophobic interactions into
consideration for this project, our energy values are solely
dependent on the distance from the ligands to the atoms on
the protein. From our energy function (Figure 4), we can see
that the energy value gets smaller generally for larger distances
between ligands and atoms of the protein. Because of this, the
samples with lower energies tend to occur far away from the
center of mass of the protein. Therefore, the distance metric
and energy metric often disagree with one another.

VI. CONCLUSION

In this work, we propose a motion planning approach to
evaluate candidate binding sites on a protein’s surface using
randomized sampling. We established that UOBPRM is the
optimal choice of sampling method to achieve this due to
its uniform sampling close to the protein surface. We also
calculated metrics for each sample that quantify characteristics



of an ideal binding site. We determined that the metrics
often do not agree perfectly with one another and sometimes
disagree greatly. Therefore, we propose the implementation of
a regression-style neural network with the metrics as features
in order to take advantage of each metric to train the method
and predict binding sites on proteins for which the real binding
sites are not known.
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