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INTRODUCTION 
The summer of 2015 was spent at North Carolina State 

University as part of the Intelligent and Interactive Media 
Research Experience for Undergraduates (IIM-REU). Initially 
I was supposed to work with Dr. Tiffany Barnes in the 
Game2Learn Lab working with educational gaming or 
working on adaptive learning algorithms. As a result of some 
timeline miscommunications in the IIM-REU program myself 
and Dr Barnes’ other REU student were relocated to other 
labs in the department. I ended up in the Visual Experience 
Lab with Dr. Ben Watson. 

Dr. Watson was more or less unprepared to take on another 
student, so I was assigned a project that had been put on the 
wayside since last summer. This was Ninja Pie.  

Ninja Pie is a visualization tool similar to a pie-chart or a 
tree-map. My task was to update the old ActionScript based 
prototype to an updated JavaScript one.  

1 RELATED WORK & PRELIMINARY RESEARCH 
While I was not given the same level of literary guidance 

as most of my peers, I was able to find some pertinent 
information. 

1.1 Data-Driven Documents 
Data-Driven Documents (D3) came out of Stanford 

University in 2012. It’s a visualization library based in 
JavaScript. The design supports transformations, immediate 
evaluations and native representations. 

1.2 Tree-maps, Sunbursts, and Bubble Charts 
The tree-map was originally a method for displaying the 
relative file sizes on a machine on a limited sized screen. This 
original purpose was very quickly made obsolete by the 
invention larger memories for computers and better screens. 
Despite this, the tree-map has remained a popular method of 
visualizing size in usually less hierarchical than originally 
purposed data sets. It has also been bastardized into relying 
less on the hierarchy for structure and more on space 
constraints.  

Sunburst charts are similar to pie charts, except they allow 
some level of hierarchy in the information being displayed. 
The drawback to a sunburst is that like a pie chart, there are 
some issues with human perception and being able to 
accurately tell the percentage that a slice represents. 
Lastly, bubble charts, while useful depend on a humans 
perception of scale to accurately tell the amount represented. 
According to Dr Watson, this is something that humans have 
difficulty with. 

2 DESIGN 
Originally inspired by the game Fruit Ninja, Ninja Pie aims to 
use 4 different components to create the visualization. These 
are: angle of cuts, cut hierarchy, area, and a percentage raster. 
The most obvious of these is the area, which is a key 
component in most visualizations. The area works to relay the 
frequency of a possible series of answers. 

What makes the Ninja Pie different from other 
visualizations is that category is denoted by the angle of the 
cut.  

The number of cuts depends on the depth of answers for a 
given category. All of the cuts for a given category will have 
the same angle. 

Lastly, because of the issues we as humans have with 
perception and area (see Stevens), the visualization is over 
laid with a percentage raster. What this means is that there is a 
layer which goes on top of the underlying area and angle 
visualization which provides a rough method of quantifying 
the data. The term raster is used to evoke the somewhat 
antique method of displaying imaged on a screen by way of a 
grid through which electron beams were shone to update 
phosphors. The term is one that Dr. Watson has been using to 
denote a kind of texture, or finite version of the data. In the 
ideal current version of Ninja Pie, this takes the form of small 
squares super imposed on top of the visualization. There are 
one hundred squares sorted into the appropriate pieces 
according to percentage of the whole. Because the 
visualization is still being developed, the raster has it’s limits. 
If a piece is less than 1%, it does not get a square, et cetera. 

2.1 Use-Cases 
The key to understanding the Ninja Pie visualization is 
understanding the need for it. The two key words in the 
investigation of other visualizations were frequency and 
category. What we are trying to represent in Ninja Pie is the 
categorical intersections of groupings. What we mean by this 
is the idea that for the target data set, we have a set number of 
questions, or categories, and for each of these questions, we 
have a defined number of answers. That this in turn means is 
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that we can organize the data into a couple difference ways. 
Because we are using JavaScript and the D3 library,  the kinds 
of data we can easily use for this visualization are either 
JavaScript Object Notation (JSON) documents or Comma-
Separated Value (CSV) files. 

The most elementary method of organizing the data is to 
write each set of answers each time it is answered. This means 
that a data set of 100 answers would be, in a manner of 
speaking, 100 lines. The size of the data would correlate 
directly would be the number of entries. Prior to our work in 
JavaScript and the D3 library, this is how the data was stored 
and processed, in the form of CSV documents. Another count 
against this method is that there is more community support 
for JSON than CSV. 

The next possibility of processing the data would be to 
organize the data in such a way that each possible answer has 
a count associated with the set of numbers. The count would 
be incremented each time another entry of that combinations 
added. This method of data collection would only have as 
many entries as there are possible combinations of answers 
which can be calculated by multiplying the number of choices 
for each question. For example, for two questions with two 
answers each, the most number of answers is 2*2 or 4. In the 
classic five answer surveys, with three questions, this would 
be 5*5*5 or 125. This method, for the sake of the model, 
would require the unused paths of answers to have a default 
count of 0. 

The third possibility, which is far more common for a 
JSON object, is to represent the data hierarchically. Consider, 
however, a set of questions such that both are relatively trivial 
(e.g. age range and gender). For the initial ordering of the 
cuts, this would be a straight-forward relatively trivial 
operation over the data, iterating over each of the sub levels 
until all the cuts are placed. But say that we want to change 
the ordering, so that gender is the first cut. Reordering a 
hierarchal JSON document is not a trivial thing to do. While 
possible, it would require a great deal of shuffling of the data 
and would ultimately end up either with a structure similar to 
the second data organization possibility or a great deal of 
work to have every possible hierarchical ordering laid out. 

Thus the second option is already sounding better. 
Imposing a data level hierarchy would greatly limit our ability 
to manipulate the data and would make it difficult to use the 
transformations encouraged by the D3 library. 

Something else to keep in mind with the data is that D3 is 
typically implemented with JSON objects. While JSON 
objects are not particularly mutable, they provide a large 
range of methods for storing the data, have a great deal of 
community support, and easy to understand. Similarly, we 
must consider the how the data will be available to the 
user/creator of the visualization. A CSV (a common output 
file type from programs such as Excel) is more or less trivial 
to convert into a JSON object with basic knowledge of search 
engines or programming experience. 

Now, returning to the primary concern of this section, we 
must consider where the information that requires categorical 
intersections exists such that it has use of a completely new 
visualization. Consider a pre-survey for a study. There are 
basic questions which every participant may be asked, these 
are usually to do with census style information (e.g. age, 
gender, experience with the field of study).  

Representing two or fewer of these categories at a time is 
easily possible using existing visualizations, in fact, if there is 
a direct correlation between two categories, we can even 
display three categories. Consider the examples in fig. 1.  

However, when we attempt to display more categories, we 
lost some facet of the data set. The tree-maps and sunbursts 
lose either category or frequency of the data. As seen in fig. 2 
it is difficult to easily see what pieces of data mean what in 
the tree-map, and difficult to compare the size of slices in the 
sunburst. The purpose of the Ninja Pie visualization is to 
display as many of the categories as are needed. 

That said, the visualization is currently effective of up to 
about five selections of three choices each, so 35 or about two 
hundred and three leaf nodes, as it were. In the case of the 
common five choice surveys, which is slightly larger than 
three questions. 

In the future, efforts may be made to expand the 
possibilities for the visualization. 

2.2 Understanding the Idea: How Ninja Pie works 

 
Figure 1: examples of a sunburst and tree-map charts 

 
Figure 2: examples of a complicated sunburst and tree-
map, note that labeling schemes for the tree-map prove 
ineffective with more data. 



We must once again return to the idea of the use case in 
order to understand the background for the visualization. 
Though for the purpose of this paper (and by suggestion of 
the name Ninja Pie is circular, it could in practice be any 
convex polygon. The first step would be to choose the initial 
piece of data for the cut. 

Lets say that we choose a poll asking if participants like 
the color blue and if they have taken a calculus class in 
college. The answers to these questions are both either yes or 
no, limiting the scope of ninja pie  that we will get from the 
example Additionally, the responses to these questions are 
made up completely for the purpose of demonstrating how 
Ninja Pie works.  

We can represent the data in the form of a simple decision 
tree in fig. 3. 

 
The first cut in the pie would look like figure 4. 

 
The second cut would then bisect each of the pieces from 

the first cut, so the piece on the bottom, representing those 
who do not like the color blue is split into those who have 

taken calculus and those who have not. Likewise on the top, 
we have two pieces representing of the people who like the 
color blue, have and have not taken calculus.  

With the aforementioned interactivity which plays a large 
role in D3, we can then change the hierarchy of the questions, 

which reveals a nearly even distribution of people who have 
and have not taken calculus.  

For the sake representing the complexity, fig. 7 is a picture 
of Ninja Pie with a more complex data set. 

25	  
participants	  

15	  like	  blue	  

9	  have	  taken	  
calc	  

6	  have	  not	  
taken	  calc	  

10	  don't	  like	  
blue	  

4	  have	  taken	  
calc	  

6	  have	  not	  
taken	  calc	  

Figure 3: an example data set 

 
Figure 4: The first cut in our example pie 

 
Figure 5: The first two cuts according to our hierarchy 

 
Figure 6: A new hierarchy, thanks to D3 



 

3 ALGORITHM DESIGN 
The problems I ran into when designing the algorithms for 

Ninja Pie were plenty. Dr Watson had many ideas for how the 
visualization should work, but little opinion on how to 
implement them. As someone with very little, and really no 
background in JavaScript, D3, visualizations, or graphics of 
any kind, my main approach was similar to approaching a 
problem set for a Data Structures or Algorithms class, which, 
while effective in theory, does not hold up quite so well in 
practice.  Because there were also a good deal of features that 
Dr Watson wanted and due to our only weekly meetings, 
progress was actually somewhat slow. However, I finally 
wrote a set of algorithms that first calculated the first n angles 
for cuts, then the optimal place to place a cut of that angle on 
an n sided polygon. Because I wrote general algorithms, it 
also took a good deal of wrangling from me and the 
JavaScript wizardry of my rather late in the program partner 
Yuhao Xu to finally implement. Xu came from Zhejiang 
University and fortunately had experience working with 
JavaScript. 

4 RESULTS AND THE FUTURE 
The final result can be seen in the above FIG. What we have, 
basically are the functionalities to: take data from a JSON 
document and parse it to our needs, cut the circle (really a 
100-gon) according to the data, and show some information 
about the data (Dr. Watson’s preferred form of “cartographic” 
labels and form of quantifying the data). 
In the future, we will need to improve the labeling format or 
methods (as seen in FIG, they are very difficult to read). 
Additionally we will likely want to implement a form of 
interactive zooming, though Dr. Watson is opposed to having 
the visualization depend on interactivity. However, it is Xu 
and my opinion that this is not only necessary for 
understanding the visualization more thoroughly, but also a 
major tenet of the D3 library. Lastly the algorithm for the 

quantification, via dots, is really just superimposing the 
visualization on a grid of dots, and while Dr. Watson believes 
that this is satisfactory, it is Xu and my belief that we can 
make it better. 

5 CONCLUSIONS AND OBSERVATIONS 
Looking back on the summer, it was an experience I am 

thankful for. While it perhaps could have been better and 
there might have been more guidance, both in pertinent 
literature (as opposed to Dr Watson’s sometimes omnipotent 
statements with no supporting literature) and in practice, 
being among peers who were doing research in a more 
traditional and less software engineering sort of way 
definitely whet my appetite for research.  

One could blame my institution’s strong emphasis on 
social justice and being assertive despite any minority status, 
but it is my—uneducated and novice—opinion that the Ninja 
Pie visualization does not actually make data easier to see and 
while it perhaps does not obfuscate it more than say a pie 
chart or a tree-map, it does not seem to make it any easier to 
understand either. 

ACKNOWLEDGMENTS 
The author would like to thank Yuhao Xu who was the 
mastermind behind turning algorithm designs into practical 
Java, Jen Albert, the queen of the IIM-REU 

REFERENCES 
I. Herman. “Graph Visualization and Navigation in Information 
Visualization: A Survey.” IEEE Transactions on Visualization and Computer 
Graphics, volume 6, number 1, pages 24-43. January-March 2000.  

H. Hofmann and M. Vendettuoli. “Common Angle Plots as Perception-True 
Visualizations of Categorical Associations.” IEEE Transactions on 
Visualization and Computer Graphics, volume 19, number 12, pages 2297-
2305. December 2013. 

M. Tory and T. Möller. “Human Factors in Visualization Research.” IEEE 
Transactions on Visualization and Computer Graphics, volume 10, number 1, 
pages 72-84. January/February 2004. 

S. S. Stevens. “On the Psychophysical Law.” The Psychological Review, 
volume 64, number 3, pages 153-181. May, 1957. 

 

 
Figure 7: A complicated set of cuts 


