

Ninja Pie: Visualizing Categorical Intersections, Summer 2015

Brighid L. Wilhite

INTRODUCTION
The summer of 2015 was spent at North Carolina State

University as part of the Intelligent and Interactive Media
Research Experience for Undergraduates (IIM-REU). Initially
I was supposed to work with Dr. Tiffany Barnes in the
Game2Learn Lab working with educational gaming or
working on adaptive learning algorithms. As a result of some
timeline miscommunications in the IIM-REU program myself
and Dr Barnes’ other REU student were relocated to other
labs in the department. I ended up in the Visual Experience
Lab with Dr. Ben Watson.

Dr. Watson was more or less unprepared to take on another
student, so I was assigned a project that had been put on the
wayside since last summer. This was Ninja Pie.

Ninja Pie is a visualization tool similar to a pie-chart or a
tree-map. My task was to update the old ActionScript based
prototype to an updated JavaScript one.

1 RELATED WORK & PRELIMINARY RESEARCH
While I was not given the same level of literary guidance

as most of my peers, I was able to find some pertinent
information.

1.1 Data-Driven Documents
Data-Driven Documents (D3) came out of Stanford

University in 2012. It’s a visualization library based in
JavaScript. The design supports transformations, immediate
evaluations and native representations.

1.2 Tree-maps, Sunbursts, and Bubble Charts
The tree-map was originally a method for displaying the
relative file sizes on a machine on a limited sized screen. This
original purpose was very quickly made obsolete by the
invention larger memories for computers and better screens.
Despite this, the tree-map has remained a popular method of
visualizing size in usually less hierarchical than originally
purposed data sets. It has also been bastardized into relying
less on the hierarchy for structure and more on space
constraints.

Sunburst charts are similar to pie charts, except they allow
some level of hierarchy in the information being displayed.
The drawback to a sunburst is that like a pie chart, there are
some issues with human perception and being able to
accurately tell the percentage that a slice represents.
Lastly, bubble charts, while useful depend on a humans
perception of scale to accurately tell the amount represented.
According to Dr Watson, this is something that humans have
difficulty with.

2 DESIGN
Originally inspired by the game Fruit Ninja, Ninja Pie aims to
use 4 different components to create the visualization. These
are: angle of cuts, cut hierarchy, area, and a percentage raster.
The most obvious of these is the area, which is a key
component in most visualizations. The area works to relay the
frequency of a possible series of answers.

What makes the Ninja Pie different from other
visualizations is that category is denoted by the angle of the
cut.

The number of cuts depends on the depth of answers for a
given category. All of the cuts for a given category will have
the same angle.

Lastly, because of the issues we as humans have with
perception and area (see Stevens), the visualization is over
laid with a percentage raster. What this means is that there is a
layer which goes on top of the underlying area and angle
visualization which provides a rough method of quantifying
the data. The term raster is used to evoke the somewhat
antique method of displaying imaged on a screen by way of a
grid through which electron beams were shone to update
phosphors. The term is one that Dr. Watson has been using to
denote a kind of texture, or finite version of the data. In the
ideal current version of Ninja Pie, this takes the form of small
squares super imposed on top of the visualization. There are
one hundred squares sorted into the appropriate pieces
according to percentage of the whole. Because the
visualization is still being developed, the raster has it’s limits.
If a piece is less than 1%, it does not get a square, et cetera.

2.1 Use-Cases
The key to understanding the Ninja Pie visualization is
understanding the need for it. The two key words in the
investigation of other visualizations were frequency and
category. What we are trying to represent in Ninja Pie is the
categorical intersections of groupings. What we mean by this
is the idea that for the target data set, we have a set number of
questions, or categories, and for each of these questions, we
have a defined number of answers. That this in turn means is

• Brighid L. Wilhite did this research under Dr Benjamin Watson at North

Carolina State University and currently attends Mills College. E-mail:
brighid.wilhite@gmail.com.

• Dr Benjamin Watson is with the Visual Experience Lab at North Carolina
State University. E-mail: bwatson@ncsu.edu.

Manuscript received 31 Aug. 2015; accepted 01 Aug. 2015. Date of current
version 25 Oct. 2015.
For information on obtaining reprints of this article, please send e-mail to:
brighid.wilhite@mills.edu.

that we can organize the data into a couple difference ways.
Because we are using JavaScript and the D3 library, the kinds
of data we can easily use for this visualization are either
JavaScript Object Notation (JSON) documents or Comma-
Separated Value (CSV) files.

The most elementary method of organizing the data is to
write each set of answers each time it is answered. This means
that a data set of 100 answers would be, in a manner of
speaking, 100 lines. The size of the data would correlate
directly would be the number of entries. Prior to our work in
JavaScript and the D3 library, this is how the data was stored
and processed, in the form of CSV documents. Another count
against this method is that there is more community support
for JSON than CSV.

The next possibility of processing the data would be to
organize the data in such a way that each possible answer has
a count associated with the set of numbers. The count would
be incremented each time another entry of that combinations
added. This method of data collection would only have as
many entries as there are possible combinations of answers
which can be calculated by multiplying the number of choices
for each question. For example, for two questions with two
answers each, the most number of answers is 2*2 or 4. In the
classic five answer surveys, with three questions, this would
be 5*5*5 or 125. This method, for the sake of the model,
would require the unused paths of answers to have a default
count of 0.

The third possibility, which is far more common for a
JSON object, is to represent the data hierarchically. Consider,
however, a set of questions such that both are relatively trivial
(e.g. age range and gender). For the initial ordering of the
cuts, this would be a straight-forward relatively trivial
operation over the data, iterating over each of the sub levels
until all the cuts are placed. But say that we want to change
the ordering, so that gender is the first cut. Reordering a
hierarchal JSON document is not a trivial thing to do. While
possible, it would require a great deal of shuffling of the data
and would ultimately end up either with a structure similar to
the second data organization possibility or a great deal of
work to have every possible hierarchical ordering laid out.

Thus the second option is already sounding better.
Imposing a data level hierarchy would greatly limit our ability
to manipulate the data and would make it difficult to use the
transformations encouraged by the D3 library.

Something else to keep in mind with the data is that D3 is
typically implemented with JSON objects. While JSON
objects are not particularly mutable, they provide a large
range of methods for storing the data, have a great deal of
community support, and easy to understand. Similarly, we
must consider the how the data will be available to the
user/creator of the visualization. A CSV (a common output
file type from programs such as Excel) is more or less trivial
to convert into a JSON object with basic knowledge of search
engines or programming experience.

Now, returning to the primary concern of this section, we
must consider where the information that requires categorical
intersections exists such that it has use of a completely new
visualization. Consider a pre-survey for a study. There are
basic questions which every participant may be asked, these
are usually to do with census style information (e.g. age,
gender, experience with the field of study).

Representing two or fewer of these categories at a time is
easily possible using existing visualizations, in fact, if there is
a direct correlation between two categories, we can even
display three categories. Consider the examples in fig. 1.

However, when we attempt to display more categories, we
lost some facet of the data set. The tree-maps and sunbursts
lose either category or frequency of the data. As seen in fig. 2
it is difficult to easily see what pieces of data mean what in
the tree-map, and difficult to compare the size of slices in the
sunburst. The purpose of the Ninja Pie visualization is to
display as many of the categories as are needed.

That said, the visualization is currently effective of up to
about five selections of three choices each, so 35 or about two
hundred and three leaf nodes, as it were. In the case of the
common five choice surveys, which is slightly larger than
three questions.

In the future, efforts may be made to expand the
possibilities for the visualization.

2.2 Understanding the Idea: How Ninja Pie works

Figure 1: examples of a sunburst and tree-map charts

Figure 2: examples of a complicated sunburst and tree-
map, note that labeling schemes for the tree-map prove
ineffective with more data.

We must once again return to the idea of the use case in
order to understand the background for the visualization.
Though for the purpose of this paper (and by suggestion of
the name Ninja Pie is circular, it could in practice be any
convex polygon. The first step would be to choose the initial
piece of data for the cut.

Lets say that we choose a poll asking if participants like
the color blue and if they have taken a calculus class in
college. The answers to these questions are both either yes or
no, limiting the scope of ninja pie that we will get from the
example Additionally, the responses to these questions are
made up completely for the purpose of demonstrating how
Ninja Pie works.

We can represent the data in the form of a simple decision
tree in fig. 3.

The first cut in the pie would look like figure 4.

The second cut would then bisect each of the pieces from

the first cut, so the piece on the bottom, representing those
who do not like the color blue is split into those who have

taken calculus and those who have not. Likewise on the top,
we have two pieces representing of the people who like the
color blue, have and have not taken calculus.

With the aforementioned interactivity which plays a large
role in D3, we can then change the hierarchy of the questions,

which reveals a nearly even distribution of people who have
and have not taken calculus.

For the sake representing the complexity, fig. 7 is a picture
of Ninja Pie with a more complex data set.

25	
participants	

15	 like	 blue	

9	 have	 taken	
calc	

6	 have	 not	
taken	 calc	

10	 don't	 like	
blue	

4	 have	 taken	
calc	

6	 have	 not	
taken	 calc	

Figure 3: an example data set

Figure 4: The first cut in our example pie

Figure 5: The first two cuts according to our hierarchy

Figure 6: A new hierarchy, thanks to D3

3 ALGORITHM DESIGN
The problems I ran into when designing the algorithms for

Ninja Pie were plenty. Dr Watson had many ideas for how the
visualization should work, but little opinion on how to
implement them. As someone with very little, and really no
background in JavaScript, D3, visualizations, or graphics of
any kind, my main approach was similar to approaching a
problem set for a Data Structures or Algorithms class, which,
while effective in theory, does not hold up quite so well in
practice. Because there were also a good deal of features that
Dr Watson wanted and due to our only weekly meetings,
progress was actually somewhat slow. However, I finally
wrote a set of algorithms that first calculated the first n angles
for cuts, then the optimal place to place a cut of that angle on
an n sided polygon. Because I wrote general algorithms, it
also took a good deal of wrangling from me and the
JavaScript wizardry of my rather late in the program partner
Yuhao Xu to finally implement. Xu came from Zhejiang
University and fortunately had experience working with
JavaScript.

4 RESULTS AND THE FUTURE
The final result can be seen in the above FIG. What we have,
basically are the functionalities to: take data from a JSON
document and parse it to our needs, cut the circle (really a
100-gon) according to the data, and show some information
about the data (Dr. Watson’s preferred form of “cartographic”
labels and form of quantifying the data).
In the future, we will need to improve the labeling format or
methods (as seen in FIG, they are very difficult to read).
Additionally we will likely want to implement a form of
interactive zooming, though Dr. Watson is opposed to having
the visualization depend on interactivity. However, it is Xu
and my opinion that this is not only necessary for
understanding the visualization more thoroughly, but also a
major tenet of the D3 library. Lastly the algorithm for the

quantification, via dots, is really just superimposing the
visualization on a grid of dots, and while Dr. Watson believes
that this is satisfactory, it is Xu and my belief that we can
make it better.

5 CONCLUSIONS AND OBSERVATIONS
Looking back on the summer, it was an experience I am

thankful for. While it perhaps could have been better and
there might have been more guidance, both in pertinent
literature (as opposed to Dr Watson’s sometimes omnipotent
statements with no supporting literature) and in practice,
being among peers who were doing research in a more
traditional and less software engineering sort of way
definitely whet my appetite for research.

One could blame my institution’s strong emphasis on
social justice and being assertive despite any minority status,
but it is my—uneducated and novice—opinion that the Ninja
Pie visualization does not actually make data easier to see and
while it perhaps does not obfuscate it more than say a pie
chart or a tree-map, it does not seem to make it any easier to
understand either.

ACKNOWLEDGMENTS
The author would like to thank Yuhao Xu who was the
mastermind behind turning algorithm designs into practical
Java, Jen Albert, the queen of the IIM-REU

REFERENCES
I. Herman. “Graph Visualization and Navigation in Information
Visualization: A Survey.” IEEE Transactions on Visualization and Computer
Graphics, volume 6, number 1, pages 24-43. January-March 2000.

H. Hofmann and M. Vendettuoli. “Common Angle Plots as Perception-True
Visualizations of Categorical Associations.” IEEE Transactions on
Visualization and Computer Graphics, volume 19, number 12, pages 2297-
2305. December 2013.

M. Tory and T. Möller. “Human Factors in Visualization Research.” IEEE
Transactions on Visualization and Computer Graphics, volume 10, number 1,
pages 72-84. January/February 2004.

S. S. Stevens. “On the Psychophysical Law.” The Psychological Review,
volume 64, number 3, pages 153-181. May, 1957.

Figure 7: A complicated set of cuts

