
Low Cost Environmental Data Collection with
Arduinos

Omar White
School of Informatics and

Computing
Indiana University

Bloomington, Indiana 47405
Email: omawhite@indiana.edu

Dr. Monica Anderson
and Trey Harrison

University of Alabama
Tuscaloosa, Alabama 35487

Abstract—Abstract - Data collection is central to any kind of
scientific study, but the costs and hazards associated with scientific
data collection often serve as a significant barrier, particularly
when attempting to collect environmental data. Without data,
it is impossible for scientists to test their hypotheses, conduct
experiments or verify results. Wireless Sensor Networks are
emerging as an effective tool for reducing the costs and hazards
associated with environmental data collection. In this paper, our
research team aims to continue these cost reduction efforts, by
testing and researching Arduinos as our data collection tool. With
the proper coding, configuration, power source, and network
architecture, Arduinos would be able to collect live data and
transmit it through Wireless Sensor Networks to a computer
database or server.

Fig. 1. An early concept drawing of our project

I. INTRODUCTION

Data is of crucial importance to scientists for their research
efforts, but can sometimes prove difficult to obtain. Without
data it is impossible to test hypothesizes, run valuable exper-
iments, or verify results. Environmental data collection often
requires the purchase of industrial grade equipment. This can
be very expensive, especially when dealing with underwater
sensors [1]. Wireless Sensor Networks(WSNs) have proven to
be useful for collecting data for a variety of purposes [1].
Using previous work done with WSNs as a guide along with
the capabilities of the Arduino, cost effective environmental
sensors could be developed.

Arduino is an open source micro-controller that is designed
to provide the functionality and power of a micro-controller
while remaining flexible and easy to use. Because Arduinos
are open source, there are a large number of code libraries that
can be used to customize their capabilities. Each library also

has its own extensive documentation and sample code. There
are also a number of different models to choose from, making
it even easier to use them for a custom project. Due to this
customization we believe that Arduinos have great potential as
data collection tools.

II. RELATED WORK

The use of WSNs for data collection is not new. The
areas of application vary greatly, from academia, to military,
to industrial and even the medical field. The Wireless Sensor
Networks consist of a number of sensor nodes that can be
deployed to collect data from an area [1]. Sensor nodes on their
own do not have the capability to transmit the data they collect
over long distances. As a result, past researchers have used
existing wireless, or other communication networks to transmit
their data to a database or server [1]. Previous work with WSNs
has also demonstrated that environmental data transmitted to
a database can be organized and sorted by location, data type,
timestamp, and other beneficial factors [3] [2] [1].

Researchers have used WSNs for collecting data in difficult
to reach or hazardous locations [2]. In order to monitor
municipal river levels for example. Data collected from WSNs
has also been used to make predictions on natural disasters
[4]. In another project, researchers were able to predict flood
occurrences and minimize property damage and loss of human
life by combining collected data with a prediction algorithm
[4].

A group of academic researchers at the University of
Nevada in Las Vegas set out to see if Arduino based sen-
sors could serve as a comparable alternative to the sensing
equipment they were currently using [3]. They used Arduinos
for data collection along with a web service they developed
to keep track of their data [3]. Their tests of the Arduino
based sensors compared to their old data collection methods
showed that the Arduino could indeed serve as a comparable,
less expensive alternative to their previous solution [3]. In
addition, the researchers found that they were able to improve
the efficiency of their data collection efforts, while making
it easier to share their data with colleagues [3]. This work
by previous researchers, further supports the idea that the
Arduino/WSN model is a viable solution for scientific data
collection.



III. RESEARCH AND EXPERIMENTATION

The goal of our initial research was to explore the Arduinos
capabilities as a device for environmental data collection.
Alabamas Sipsey river served as an initial deployment site.
Tests were run using the Arduino as a sensor node. Networking
solutions were explored and several candidate designs were
proposed before a prototype was decided upon. In addition to
barriers associated with keeping costs under control, the team
was also forced to deal with obstacles like power consumption,
stable network connectivity, and how to best protect equipment
from the elements.

Fig. 2. The Arduino IDE with an example of the basic structure of an Arduino
sketch.

A. First Steps

Before anything else could be accomplished the Arduino
had to be developed into a data collection device. The Arduino
Uno was selected for this stage of the project. The goals
for the Uno included collecting water temperature data and
recording water depth. Using a submersible temperature sensor
with some of the Arduinos built in code libraries, the Arduino
was able to capture temperature data and display it via serial
communication.

In order to record that data that was being collected an
SD card reader was integrated into the design. The SD card
allowed data to be recorded without the team needing to devote
extra time to research networking solutions or creating a server.
This allowed for data collection to stay the main focus of this
stage of the project. The SD card would serve as a failsafe
or backup for future iterations of the project in the event that
a connection to a server was lost, or data wasnt completely
transmitted; a copy of it would be stored locally with the sensor
node.

The Arduino Uno was further tested to see if accurate data
could be collected and stored. Code libraries for both the SD
card reader and the temperature sensor were readily available
and easily adaptable to the design. Using these libraries, the
team was able to code the Arduino Uno to collect and record
data at regular intervals.

B. Water Depth Measurement

The Arduino also needed to be able to monitor and record
changes in water depth overtime. Collecting this type of data
wasn’t as straightforward as equipping it with a thermometer.

Fig. 3. An Arduino Uno and Arduino Mini Wireless, the two Arduino models
used in the project, being programed.

The easiest solution would have been to equip the Arduino
with a pressure transducer and then convert the pressure data
into a depth measurement, but this method presented a major
cost barrier. An affordable underwater pressure transducer
could not be found. The majority of transducers that were
found, were meant for industrial applications, and not suited
for academic research projects that must operate under a tight
budget. With pressure transducers too expensive to provide
a viable solution, other less costly alternatives had to be
explored.

Previous researchers ran into the same problem. In a
similar project, researchers used ultrasonic sensors to create
an underwater depth measurement system [4]. Their system
used a PVC pipe in the river, with openings to allow for water
to flow freely through the pipe without air pressure buildup.
The inside of the pipe contained an ultrasonic transmitter and
receiver. This allowed for depth measurement to be calculated
by determining the amount of time it took for a signal to
travel up and down the pipe. As the water levels changed,
a hollow box at the bottom of the pipe would float on the
surface of the water, and reflect the ultrasonic signal, allowing
a scientist to measure the water level variation. The overall
height of the PVC pipe, the thickness of the box, and the
speed of the ultrasonic sensor signal, were all factored into
the final depth measurement [4]. This solution seemed viable,
but would drive up project costs due to the price of PVC pipe.
Due to the potential cost of this second option more time had
to be devoted to finding cost effective solutions before settling
for this more expensive option.

The issue of depth sensing is one that has yet to be
resolved. Late into the project, a more cost effective sensor
was discovered, but as of this writing, this more cost effective
sensor has yet to be ordered and tested. For more information,
see the future works section below.

C. Power Consumption

After identifying the types of data to be collected, as well
as various methods of obtaining the data, the next hurdle
was power consumption by the sensor nodes. Sensor nodes in
WSNs operate on a limited energy budget [5]. It is important
to be able to optimize power consumption in the event that
batteries used to power sensor nodes are unable to be charged
or replaced [5]. During tests, the Arduino Uno was powered
through the USB port of the computer the team used to develop
and program it. This option would obviously not be possible



Fig. 4. Running the Arduino Mini Wireless from a power supply

during a live deployment, meaning that the Arduino would
need to be battery powered.

1) Power Optimization: If long term data collection and de-
ployments were the overall goal, optimization of the Arduinos
power consumption had to be taken into account. Powering the
Arduino Uno from a battery was simple. The Arduino Uno op-
erated at 5 volts. As a small test, we hooked up a 9 volt battery
to it, and then connected it to our temperature sensor and SD
card reader. We discovered that we were able to successfully
capture and record data with our device. Unfortunately a 9volt
battery wouldn’t keep the device powered for the extended
periods of time.

Concerns over power consumption and long term deploy-
ment led to exploration of the capabilities of a different
Arduino model that could replace the Arduino Uno, the
Arduino Mini Wireless. The benefits of the Mini Wireless
included: built-in wireless capability, the ability to operate at
3.3 volts versus the 5.0 volts of the Arduino Uno, a smaller
form factor, meaning it required less material when using an
environmentally sealed enclosure, and most important of all;
the ability to use sleep mode. Sleep mode allows for unused
components of the Arduino to be shut off for a period of time,
allowing the device to consume less power. Since the device
only needed to collect and transmit data at timed intervals; this
technique was ideal for the project. The usage of sleep mode
to conserve power is a common tactic when developing with
WSNs [5].

Duty cycling - the interval between the time a device is
active, to its total deployment time, is crucial when utilizing
sleep mode [5]. Understanding which parts of a design are
most energy intensive, helps with deciding when and where
to activate sleep mode. Typically wireless communication is
one of the most energy intensive aspects of a sensor node
[5]. By employing a sleep/wake schedule, sending data at
predetermined intervals while placing the device in sleep mode
the rest of the time, a device uses less energy [5].

We used a third party library (Jeelib), to implement sleep
mode into the Mini Wireless. This library only allowed it to
sleep in intervals of a few seconds at a time. These intervals
were further extended to conserve power using loops to chain
together several instances of sleep mode together one after
another.

In order to save the maximum amount of power a real-time
clock could be added to the design. Using this clock to trigger
interrupts the Arduino could be woken from an even deeper

sleep, one that shuts off nearly all of its components.The clock
also has the added benefit of being able to time stamp our
data. This is a method that we didn’t have time to test, but in
theory it would reap the maximum benefits in terms of power
conservation.

Fig. 5. We set up a makeshift workstation outside to monitor the communi-
cations sent by the Arduinos

D. Networking Solutions

Figuring out feasible networking solutions that could trans-
mit data from the Arduino to a server or database, was one of
the most important yet difficult aspects of the research project.
We explored the possibility of using ham radio networks, the
built-in networking capability of the Arduino Mini Wireless
itself, and cellular radio towers.

1) HAM Radio: We began looking for networking solutions
by exploring Ham Radio networks as our first option. The Ar-
duino Mini Wireless could be equipped with a radio transmitter
that would send a signal to another transmitter. A series of
short range signals would be sent until the data reached a point
where it could be transmitted long range via cell towers or Wi-
Fi. Though this option was quickly abandoned, due to expense,
it did make us take better notice of the data communication
abilities that already existed in the Arduino Mini Wireless.

2) Arduino Wireless Communication: Similar to the Ham
Radio option, the Mini Wireless required data to be relayed
through a series of short range messages until it reached
a stronger signaling point capable of transmitting data over
a longer distance. The difference: unlike the Ham Radio
option, the signals could be sent using the Mini Wireless own
communication capabilities. This option also had the potential
to be cheaper than the Ham Radio option.

We conducted two tests with the Arduino Mini Wireless
network solution, one in the lab; the other in the area outside
of our building. We connected two Arduino Minis to two
separate laptops so we could monitor their communication.
One Arduino sent a series of number values to the other,
and when received - an acknowledgement message would be
sent back. After every message transmission, the sensors were
moved farther apart, allowing us to test their range. The tests
were promising, but the range was limited to a little outside of
our line of sight. Further testing is necessary to determine the
maximum range the Arduino Mini Wireless can successfully
transmit data. 5



Fig. 6. A field test of a Cellular Radio

3) Cellular Radio: Cellular radio has proven to be a
viable data transmission option for many sensor networks.
Deployment sites that have strong enough signals to send text
messages, are areas where cellular communication could be
used to send data. If a deployment site has enough signal
power, the sensor node could send the data as a text message
to wherever the collected data was being stored. All the data
collected by such a system could be saved as text which could
be converted upon reaching a server.

Our team spent time exploring cellular radio as an option
for data transmission. A small cellular radio was assembled
and taken out to the field to be tested. We were able to send
messages to our cell phones by hooking up the cellular radio
to a laptop computer. This led us to believe that the same could
be done with the Mini Wireless set up as a sensor node.

Fig. 7. A sketch of a proposed prototype design.

IV. FUTURE WORK

Most of the work done so far has been planning, scouting
out components to use, testing two separate Arduinos with
different features, and visiting possible deployment sites. One
of the most important next steps is building a prototype that
can be tested and eventually deployed. The Sipsey river is the
first area that is planned for deployment of a prototype.

A promising candidate design has been decided upon 7.
This design utilizes a IP-67 enclosure to house the Arduino,
circuitry, and an SD card. Attached to the enclosure is a cellular
antenna for transmitting data, a solar panel to keep the battery

charged, a barometric temperature and pressure sensor, and the
underwater sensors. This candidate design adds new possible
components that will need to be tested before a prototype
can be built. One of these new components is an underwater
pressure and temperature sensor that was discovered late into
the project. This would resolve the issue we had with collecting
water pressure data while also consolidating two types of
data collection into one sensor. Of these new components the
barometric sensor, cellular antenna, and new underwater sensor
will most likely be integrated first, with solar charging possibly
at a later date.

This work will also require a database to to house the
collected data. The ultimate goal for this database is for it
to be updated in real time and made available to the public.
As this research continues, goals will very likely change or
evolve in an effort to make this solution adaptable to a variety
of environmental research scenarios.

V. CONCLUSION

Arduino sensor networks can be developed for the purpose
of collecting environmental data. Arduinos come in a variety
of customizable features with an abundance of coding libraries
that can extend their capabilities. The work described in this
paper illustrates that the Arduino shows promise for being
used as a low cost environmental data collection tool. By
drawing upon the previous work done with WSNs and applying
that work to an Arduino based sensor network, a powerful
and flexible, low cost sensing solution can be developed. The
future of this research is promising, and with more time and
development, could prove to be a real asset to anyone hoping
to collect environmental data.

ACKNOWLEDGMENT

Thank you to the Authors of all the papers referenced in
the paper as well as everyone who worked on this project.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The
hitchhiker’s guide to successful wireless sensor network deployments,”
Proceedings of the 6th ACM conference on Embedded network
sensor systems - SenSys ’08, pp. 43–56, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1460412.1460418

[3] S. Lee, J. Jo, Y. Kim, and H. Stephen, “A Framework
for Environmental Monitoring with Arduino-Based Sensors Using
Restful Web Service,” 2014 IEEE International Conference on
Services Computing, pp. 275–282, 2014. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6930544

[4] Z. I. Chowdhury, M. I. Rahaman, and S. I. Chowdhury, “Autonomous
Monitoring of River Level with Real Time Event Prediction,” Computer
and Information Science, vol. 7, no. 3, pp. 67–80, 2014. [Online]. Avail-
able: http://www.ccsenet.org/journal/index.php/cis/article/view/35905

[5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc
Networks, vol. 7, no. 3, pp. 537–568, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2008.06.003


