
Functional Reactive Programming using Elm 1 | P a g e

L. MORSE, S. WEIRICH: FUNCTIONAL REACTIVE PROGRAMMING USING ELM

FUNCTIONAL REACTIVE PROGRAMMING

USING ELM

Undergraduate Intern

LEONDRA MORSE*

University of Maryland Eastern Shore

Department of Mathematics and Computer Science

Undergraduate Student: Junior

Bachelor Degree (Expected: Spring 2016) in Computer Science

E-mail: lnmorse@umes.edu

Research Mentor

STEPHANIE WEIRICH

University of Pennsylvania

Associate Professor of Computer and Information Science

School of Engineering and Applied Science

Ph. D (2002) Computer Science: Cornell University

E-mail: sweirich@cis.upenn.edu

Abstract: Functional Programming is a programming paradigm. A style of building elements

and structure of computer programs. This will treat computation as the evaluation of

mathematical functions and will avoid changing-state and mutable data. Functional Reactive

Programming is a programming paradigm for asynchronous data-flow using the building blocks

of functional programming such as map, filter, reduce, etc. In the field of computer science, we

are especially interested in forming uncomplicated and simple approaches in order to simplify a

series of actions or steps taken to achieve a finish product. These procedures provide a collection

of processes in the development and construction of algorithms. This will enable clarity,

understanding, simplicity, and elegance to the knowledge in comprehending codes of various

languages from different authors and editors. Functional style is different to current promoted

languages such as Java, C++, C, and Visual Basic. Software engineers are always looking for the

next best step to a concise, abstracted manner of coding. The goal in this research project is to

learn, understand, and comprehend functional reactive programming by using Elm language to

design and develop a program.

Keywords: Functional Reactive Programming, Asynchronous data-flow, Simplified approaches,

Functional style, Abstract concise code

mailto:lnmorse@umes.edu
mailto:sweirich@cis.upenn.edu

Functional Reactive Programming using Elm

ii

Table of Contents

Table of Contents ... ii

1. Introduction ...2

1.1 Purpose ..2

2. Overall Description ...2

2.1 Functional Reactive Programming ..2

2.2 Elm Programming Language ..2

3. Elm Programming Final Project ...3

3.1 Project Purpose ..3

3.2 Product Scope ...3

3.3 Intended Audience and Reading Suggestions ...3

3.4 Product Functions ...4

3.5 Elm Requirements ...4

3.5.1 Model Configurations ...4

3.5.2 Model ..5

3.5.3 Input ..6

3.5.4 View Configurations ... 6-7

3.5.5 Updates ... 8-9

3.5.6 Display ..10

4. Implementing Elm ..10

4.1 Accessing Elm ..10

4.2 Executing Elm Program ..12

5. Conclusion ...12

6. Other Requirements ...13

 Appendix A: References ...13

Functional Reactive Programming using Elm 2 | P a g e

2

1. INTRODUCTION

1.1 Purpose

This summer will incorporate the learning of a new language called “Elm”.

Figure 1: “Elm” Product Logo

Czaplicki, Evan. "Elm." Elm. N.p., 2011 -15. Web. 08 June 2015.

Elm is a language based on the idea of Functional Reactive Programming. This is believed

to be made easy to create interactive applications than most languages. The code can compile

to HTML, CSS, and JavaScript. Elm is great for 2D and 3D games, diagrams, widgets, and

websites. Learning the language of Elm helps create an easier way to create different Html

JavaScript assignments. By analyzing the different elements of the Elm language will justify

information, and the experience of learning functional reactive programming enabling full

understand of Elm language style.

2. OVERALL DESCRIPTION

2.1 Functional Reactive Programming

Functional Reactive Programming is a concise approach to create a functional reactive

programming system because the system requires interaction with a variety of different signals

from the keyboard, and/or outside sources [5]. These systems consist of many different subjects

such as videos games, animations, graphical user interfaces, modeling, and robotics.

2.2 Elm Programming Language

Elm is a Functional Reactive Programming Language. Therefore, this programming

language is widely used for programs that consist of interactions from input and output sources.

The features of Elm contains an abundance of valuable aspects such as no runtime exceptions

(Elm’s compiler will locate and find the errors in your program before they impact your user)

[1], Blazing fast rendering (Elm can convert elm based programs into JavaScript using elm-

html library) [1], Libraries with guarantees (Elm language libraries are automatically enforced

for all community libraries) [1], Clean syntax (No semicolons. No mandatory parentheses for

calling functions. Everything is an expression. This allows more concise coding with the use

of pattern matching, automatic currying, and destructive assignments.) [1], Smooth JavaScript

interop (Elm consists of a JavaScript library that can communicate with elm code directly

without sacrificing guarantees.) [1], and Time-traveling debugger (Elm allows the changing of

code as it progresses without page refresh) [1].

Functional Reactive Programming using Elm 3 | P a g e

3

The values in Elm are immutable, meaning the values cannot be modified after they are

created, such that the values in Java, C++, and C are allowed to be modified after being defined.

Values have advantages, they can be given a type annotation that describes the exact shape of

the value [4]. These types include custom types called ADTs, this allows one to create new

types, primitive types (strings and integers), and basic data structures (lists, tuples, and

extensible records) [4].

There are 6 basic sections that are important to Elm. These sections of Elm consists of the

model configurations, view configurations, inputs, model, updates, and the display of the

program [2]. Each section is crucial to the functioning of elm programs. The model

configurations are for the programs necessary data-flow, such as the size and speeds of objects

within the program. On the other hand, the view configurations creates a foundation for color,

and text, this will be displayed within the program. The inputs will come from the user, and or

keyboard. The model (map) will create a format of where objects should or should not be

placed in one’s program before displayed on one’s screen. Updates will provide renewal of

interactions between objects, and inputs. This section is very important to the existence of

interactions in one’s program. Finally, one will have to display the program on the screen

through the display (show) section of the program.

3. ELM PROGRAMMING FINAL PROJECT

3.1 Product Purpose

The purpose of this product is to create a program that will include everything that

one will learn about functional reactive programming. In this case, one will create a

program that consist of interactions between several objects within a graphical interface.

This program will be replicated from a game called Brick Buster, but will be created with

the use of Elm language.

3.2 Product Scope

A web-based applet that allows the player to move the paddle from left to right

using the input from the keyboard in order to rack up points by hitting all the bricks that

are in the field to complete the game. This game is a technical way to understand how elm

programming works in the access of interacting objects.

3.3 Intended Audience and Reading Suggestions

This program is intended for persons of the DREU Computing Research

Association, and the Computer Science Department. The sequence for reading this

documents begins with the overview sections and proceeds through the sections that are

most pertinent to each reader type. Please refer to the table of contents to find area of

interest.

Functional Reactive Programming using Elm 4 | P a g e

4

3.4 Product Functions

This product will consist of many functions between objects and collisions between

them objects within the program. The paddle will have to interact with the ball, and the ball

will have to interact with each brick within the display of the program providing points for

each brick that is hit.

3.5 Elm Requirements

3.5.1 Model Configurations

The game width and height is set to 600px to 400px. The half width and half height

splits the whole game as a whole in half from 300px to 200px. As one will see that

there boundaries, that will be half of the games width, and game height. Also, there

are four record types created here known as Brick, Ball, Player, and Game type. These

particular types define key elements that are needed to define each type. Each element

are defined as a data type “Float” known as the storage of floating-point values, that

is, values that have potential decimal places [7], and “Int” known as the storage of

integral values, that is, whole numbers [7].

 The Brick type consists of the x and y coordinates, the height and width of the brick,

and the number of rows and the number of columns of bricks. The Ball type consists

of x and y coordinate, and the “vy” and “vx” velocities for the speed of the ball. Such

as the player, and game type. All models consist of the same elements that are

necessary for that particular type.

(gameWidth,gameHeight) =

(600,400)

(halfWidth,halfHeight) =

(300,200)

paddleYPos= -100

ballRadius = 15

paddleWidths = 50

paddleHeight = 10

{--This type defines the game

state changes. Will the game be

played, paused, or Setup--}

type State = Play | Pause |

Setup

{--The types are created, and

Float, Int are defined for each

element within the record --}

type alias Brick= --Brick type

 { posX: Float

 ,posY: Float

 ,brkH: Float

 ,brkW: Float

 ,brkR: Float

 ,brkC: Float

 }

type alias Ball = --Ball type

 { x : Float

 , y : Float

 , vx : Float

 , vy : Float }

type alias Player =--Player type

 { x : Float

 , y : Float

 , vx : Float

 , vy : Float

Functional Reactive Programming using Elm 5 | P a g e

5

 , score : Int

 , width: Float

 , height: Float }

type alias Game = --Game type

 { state : State

 , ball : Ball

 , player1 : Player

 , brick : List Brick

 ,score : Int }

type alias Input =

 { space : Bool

 , enter: Bool

 , dir1 : Int

 , delta : Time}

3.5.2 Model

The model section consists of the positioning and the sizes of each of the element

types located in the model configurations. Located below in the Elm code the

Player, Game, Ball, and Brick types are defined. Each element within each type are

defined, and all elements within that element type have definite values. These

elements are stored in what we call data functions.

{--This creates a function

named player that takes a float

and gives it to the player. In

which you define each of the

elements within the type Player

recorded --}

player : Float -> Player

player x1 =

 {x=0, y=x1, vx=0, vy=0,

score=0, width=40, height=8 }

{-- This creates a function

named defaultGame that takes

the type record Game and

defines each element within the

Game record--}

defaultGame : Game

defaultGame =

 { state = Setup

 , ball = Ball 0 (paddleYPos +

ballRadius) 0 0

 , player1 = Player 0

paddleYPos 0 0 0

paddleWidths paddleHeight

 , brick = [brick1, brick2,

brick3, brick4]

 , score =0

 }

{--This creates a function

named intball that uses the

record Ball and fills in each

element --}

intball: Ball

intball = Ball 0 (paddleYPos +

ballRadius) 0 0

{-- This creates a function

named brick1, brick2, brick3,

and brick4 that defines the size

of the brick and the position --}

Functional Reactive Programming using Elm 6 | P a g e

6

brick1: Brick

brick1 =

 { posX = 50

 , posY = 50

 , brkH = 15

 , brkW = 30

 , brkR = 5

 , brkC = 5 }

brick2: Brick

brick2 =

 { posX = -50

 , posY = 50

 , brkH = 15

 , brkW = 30

 , brkR = 5

 , brkC = 5 }

brick3: Brick

brick3 =

 { posX = -100

 , posY = 50

 , brkH = 15

 , brkW = 30

 , brkR = 5

 , brkC = 5 }

brick4: Brick

brick4 =

 { posX = 100

 , posY = 50

 , brkH = 15

 , brkW = 30

 , brkR = 5

 , brkC = 5 }

3.5.3 Input

The input section is the signal that is coming or will be read by the keyboard. The

following code shows what will be used to help move and interact with objects.

These elements consist of signal.map4 Input [3] (Input takes 4 arguments, therefore

map4 will need to be used), the Keyboard.space [3] (shortcut command for

computer keyboard spacebar), the Keyboard.enter [3] (shortcut command for

computer keyboard enter bar), and the Signal.map.x Keyborad.wasd [3] (creates a

signal for the keyboard to use the “w,a,s,d” for one element mapping) for the

program to interact with the program.

input: Signal Input

input =

 Signal.sampleOn delta <|

 Signal.map4 Input

 Keyboard.space

 Keyboard.enter

 (Signal.map .x Keyboard.wasd)

 delta

3.5.4 View configuration

The view configurations create a foundation for color, and text that one will like to

have displayed within the program. This part of the program is very easily constructed.

Functional Reactive Programming using Elm 7 | P a g e

7

{-- Creates a function named

view that accepts 2 integers and

passes it through the Game

type to return an element. This

is also where the game, paddle,

ball, and score is created to be

print to the screen with color --

}

view : (Int,Int) -> Game ->

Element

view (w,h)

{state,ball,player1,brick} =

 let

 scores =

 txt (Text.height 50)

(toString player1.score)

 in

 container w h middle <|

 collage gameWidth

gameHeight

 [rect gameWidth

gameHeight

 |> filled pongGreen

 , oval 15 15

 |> make ball

 , group (List.map

viewBrick brick)

 , rect player1.width

player1.height

 |> make player1

 , toForm scores

 |> move (0,

gameHeight/2 - 40)

 , toForm (if state == Play

then spacer 1 1 else txt identity

msg)

 |> move (0, 40 -

gameHeight/2)

]

{-- Creates a function called

viewBrick and colors the bricks

with a specific color --}

viewBrick: Brick -> Form

viewBrick brick =

 filled Color.white (rect

brick.brkW brick.brkH)

 |> move (brick.posX,

brick.posY)

{-- Colors the background of the

game –}

pongGreen =

 rgb 0 0 0

{--Colors the text within the

program --}

textGreen =

 rgb 160 200 160

txt f string =

 Text.fromString string

 |> Text.color textGreen

 |> Text.monospace

 |> f

 |> leftAligned

{-- Creates the message that will

be displayed on the screen --}

msg = "SPACE to start, AD to

move, Enter to Setup"

make obj shape =

 shape

 |> filled white

 |> move (obj.x,obj.y)

Functional Reactive Programming using Elm 8 | P a g e

8

3.5.5 Updates

The update section of the program is a crucial part of the program. This section of the

program keeps track of the programs progress. This is an essential portion to the

functioning of the program and the interactions within the objects created within the

program itself. It keeps track of the states that the programs may be confined to, and the

collisions between the objects. In the code below there are several updates from the

collisions between the ball and paddle, the ball and the brick, and also the game states.

update : Input -> Game -> Game

update {space, enter, dir1,

delta} ({state,ball,player1,

brick, score} as game) =

 let

 maybeBrick=

 updateHit ball brick

 points =

 case maybeBrick of

 Just b -> 1

 Nothing -> 0

 dropped =

 ball.y < -halfHeight

 newBrick =

 case maybeBrick of

 Just b -> removeBrick b

brick

 Nothing -> brick

 newState =

 if

 | enter ->

 Setup

 | space ->

 Play

 | dropped ->

 Pause

 | otherwise ->

 state

 newPlayer =

 updatePlayer delta dir1

points player1

 newBall =

 if | newState == Pause ->

 ball

 | space ->

 { ball |

 vx <- 90,

 vy <- 70

 }

 | enter ->

 { intball|

 x <- newPlayer.x

 }

 | newState == Setup ->

 { ball |

 x <- newPlayer.x

 }

 |otherwise ->

 updateBall delta ball

player1 maybeBrick

 in

 { game |

 state <- newState,

Functional Reactive Programming using Elm 9 | P a g e

9

 ball <- newBall,

 player1 <- newPlayer,

 brick <- newBrick

 }

updateBall : Time -> Ball ->

Player -> Maybe Brick -> Ball

updateBall t ({x,y,vx,vy} as

ball) p1 b1 =

 if not (ball.y |> near 0

halfHeight) then

 intball

 else

 let

 topHit =

 case b1 of

 Just b -> ball.y > b.posY

 Nothing -> False

 bottomHit =

 case b1 of

 Just b -> ball.y < b.posY

 Nothing -> False

 in

 physicsUpdate t

 { ball |

 vy <- stepV vy (ball

`within` p1 || topHit)(y >

halfHeight-7 || bottomHit),

 vx <- stepV vx (x < 7-

halfWidth) (x > halfWidth-7)

 }

updateHit: Ball -> List Brick ->

Maybe Brick

updateHit ball brick =

 case brick of

 [] -> Nothing

 head::tail ->

 if hitBrick ball head

 then Just head

 else updateHit ball tail

removeBrick: Brick -> List

Brick -> List Brick

removeBrick b1 b2 =

 case b2 of

 [] -> []

 head::tail ->

 let o= removeBrick b1 tail

 in

 if b1 == head

 then o

 else head :: o

updatePlayer : Time -> Int -> Int

-> Player -> Player

updatePlayer t dir points player

=

 let

 player1 =

 physicsUpdate t { player |

vx <- toFloat dir * 200 }

 in

 { player1 |

 x <- clamp (22-halfWidth)

(halfWidth-22) player1.x, --

make sures within players range

 score <- player.score +

points

 }

 physicsUpdate t ({x,y,vx,vy} as obj)

=

 { obj |

 x <- x + vx * t,

 y <- y + vy * t

 }

near k c n =

 n >= k-c && n <= k+c

Functional Reactive Programming using Elm 10 | P a g e

10

hitBrick: Ball-> Brick -> Bool

hitBrick ball brick =

 near ball.x brick.brkW brick.posX && near

ball.y brick.brkH brick.posY --}

within ball paddle =

 near paddle.x paddle.width ball.x && near

paddle.y paddle.height ball.y

stepV v lowerCollision upperCollision =

 if | lowerCollision ->

 abs v

 | upperCollision ->

 -(abs v)

 | otherwise ->

 v

3.5.6 Display

This section displays the game.

main =

 Signal.map2 view

Window.dimensions gameState

gameState : Signal Game

gameState =

 Signal.foldp update

defaultGame input

delta =

 Signal.map inSeconds (fps 35)

4. IMPLEMENTING ELM

4.1 Accessing Elm

In order to access Elm on the system one must install the Elm-Package [1]. After installing

the Elm-Package one will have to install Git (allows access to install evancz files to your

system) [6]. Then one will proceed to activate the Elm-Reactor.

Functional Reactive Programming using Elm 11 | P a g e

11

Step 1: Elm-Reactor Activation

a. Open Command Prompt

b. Type: elm-reactor.exe

Example: "C:\Users\ (System Name)> elm-reactor.exe"

c. If the file "elm-reactor.exe" is located it should create a platform where elm files can

be access and executed.

Note: If "elm-reactor.exe" is not found on your system after elm-package is installed one must

open their computer registry found on their system and create a direct path to the file for

execution. (Shown in steps a.1- a.3)

Step a.1: Access Registry Editor

a. Open Command Prompt

b. Type: regedit

Example: "C:\Users\ (System Name)> regedit"

Note: may get a pop up about access permission to run the regedit as known as "User

Account Control", accept the pop up.

c. Registry will Open with the title "Registry Editor"

 Step a.2: Creating a Path for Elm

a. Now find the folder known as "HKEY_CURRENT_USER" extend the folder

b. Under the "HKEY_CURRENT_USER" folder go to the "Environment" folder

c. Right Click -> New -> Expandable String Value, Name that file "PATH"

d. close Registry Editor

Step a.3: Repeat Step 1.

Figure 3

**MUST keep "elm-reactor.exe" active in order for elm platform to work! In other words leave open

the command prompt while in use.

Functional Reactive Programming using Elm 12 | P a g e

12

4.2 Executing Elm Program

Executing Elm program is easy after executing the elm-reactor. One will have to access the

platform through a browser application on the Local Host [2]. Shown in the following step.

Step 2: Accessing Elm Platform

a. Open up your Internet browser

i. Firefox

ii. Google Chrome

iii. Internet Explorer

b. Type in address bar: http://localhost:8000
i. Elm Platform opens in browser
ii. Directories should then be visible on browser
iii. Locate Elm document

c. Running Elm document

i. Click located document

ii. Elm document will open in browser executed if code is correct without

errors(located in Figure 4)

Figure 4

5. CONCLUSION

This document presents a technical description of the project and results that were obtained

during the summer of 2015. The design and implantation of a final Elm program using all

fundamental, and advanced styles of functional reactive programming is described to broaden

the understanding of the programs functionality. The style of functional reactive programming

used in this program shows what has been learned and understood throughout the summer.

Perhaps functional reactive programming is more complicated than JavaScript, C++, and C,

but the coding is more concise and easier to understand when looking at others code. Functional

reactive programming is believed to become the new programming style used across the world

because of its easy functionality among the interaction between varieties of different domains.

http://localhost:8000/

Functional Reactive Programming using Elm 13 | P a g e

13

6. OTHER REQUIREMENTS

Appendix A: References

[1] Czaplicki, E. (2015, April 20). Elm. Retrieved August 5, 2015, from http://elm-lang.org/

[2] Czaplicki, E. (2015, April 20). Learn by Example. Retrieved August 7, 2015, from

 http://elm-lang.org/examples

[3] Czaplicki, E. (2015, June 25). Elm-lang / core. Retrieved August 7, 2015, from

 http://package.elm-lang.org/packages/elm-lang/core/2.1.0/

[4] Elm (programming language). (2015, July 31). Retrieved August 4, 2015, from

 https://en.wikipedia.org/wiki/Elm_(programming_language)

[5] Reactive programming. (2015, May 15). Retrieved August 5, 2015, from

 https://en.wikipedia.org/wiki/Reactive_programming

[6] Torvalds, L. (2005, April 7). Git. Retrieved August 5, 2015, from http://git-scm.com/

[7] What is the difference between the float and integer data type when the size is the same?

 (2013, October 10). Retrieved August 7, 2015. from

 http://stackoverflow.com/questions/4806944/what-is-the-difference-between-the-float-and-

 Integer-data-type-when-the-size-is

