
Leveraging Change History to Understand Development
Challenges in Condition Variable Synchronization

[A Case Study of the Apache HTTPD Server Project]

Johanna Goergen
Washington and Lee University

204 W Washington St
Lexington, VA

goergenj16@mail.wlu.edu

ABSTRACT
Writing multi-threaded programs that are both efficient and
preserve correctness/atomicity is a great challenge for which
very few automatic tools exist. Using the code repository to
the Apache HTTPD Server Project, a highly multithreaded
open-source server, we hope to draw some conclusions about
what challenges real-world developers experience most often
as well as what measures are often taken to address these
challenges.

This paper discusses the findings of this study, which was
done both automatically (using scripts to parse the contents
of the code repository) and manually (by reading and an-
alyzing particularly interesting code changes). It hopes to
reveal specifically the challenges encountered when imple-
menting condition variable routines as a means of synchro-
nization. A similar case study was performed by Lu et al
[1] regarding critical section change across four open-source
multi-threaded projects (including the Apache HTTPD Server
Project) and was useful in organizing this condition variable
routine study.

1. INTRODUCTION
1.1 Motivation
It is our hypothesis that by collecting extensive data on the
synchronization changes made by developers in the process
of creating multithreaded software, we will uncover patterns
that will lend themselves to algorithms for automating/as-
sisting multithreaded software development. Studying par-
ticularly the motivation behind changes to synchronization
variable routines will provide information about how de-
velopers are managing to balance efficiency and correct-
ness in multithreaded software. The Apache HTTPD Server
Project is an ideal project for such a study because its first
publically released version came out in April 1996 and since
then it has been revised over 1500000 times by a large team

of developers. The Apache Server Project consists of many
modules which make use of multiple processes and multiple
threads to process HTTP requests and provide HTML re-
sponses as quickly as possible, thus requiring a large amount
of synchronization.

1.2 Contributions
• Graphing and Analysis of All Changes Over

Time: For each basic type of synchronization change
(addition, removal, move, and recontextualize) I cre-
ated a graph that plots the number of changes against
the months from start of development. These show
patterns of development that tell us what type of changes
most often persist throughout development vs. what
changes are required more at the beginning or with
new functionality. The data for these graphs was col-
lected using scripts which acquired the diff content
from SVN for each revision and considered synchronization-
related changes within that diff content, categorizing
them automatically.

• Analysis of Random Sample of Changes: Af-
ter the script mentioned above harvested and catego-
rized all the relevant changes from the code resposi-
tory, I used a script to randomly sample 60 of the non-
trivial changes found by the original script. I then
inspected each of these changes individually, catego-
rizing each change as motivated by either ”Refactor-
ing”, ”New Functionality”, or ”Correctness”. Within
the ”Refactoring” category, I further determined the
motivation for each change to fall into one of the fol-
lowing subcategories: ”Performance”, ”Code Reusabil-
ity/Abstraction”, ”Stylistic”, ”Removing Unused Func-
tionality”, and ”Inexplicable” (certain changes seemed
to be counterintuitive and were usually changed back
by another developer later on in development). Within
”New Functionality”, the only type of change was ”Syn-
chronization Added with New Code”, in which the
synchronization code was added alongside new struc-
tures. The subcategories of the ”Correctness” motiva-
tion are: ”Under-Synchronization” in which new syn-
chronization is added where needed, ”Over-Synchronization”
in which too much synchronization previously yielded
incorrect results (note, if oversynchronization was pre-
viously just causing performance slowness, this change
would fall under the ”Refactoring: Performance” cat-
egory instead), ”New Qualifications for Syncrhoniza-

tion” in which conditions to be met before calling a
condition variable routine are changed, and ”Race Con-
dition” in which there had previously been a race con-
dition due to improper synchronization.

• Analysis of Changes per Condition Variable: I
created a script that counts the number of occurrences
of each condition variable within the HEAD revision of
the Apache trunk. Then I created a script that counts
the number of changes to each condition variable over
the course of development. Then I analyzed the rela-
tionship between these results.

2. METHODOLOGY
2.1 Collecting and Categorizing Synchroniza-

tion Changes Automatically
The first step in performing the motivation analysis for the
condition variable-related changes in the Apache repository
was to create a Python script that automatically gathered all
relevant changes and determined as much as possible about
that change. Namely, without maual analysis, it was possi-
ble to write a script that categorized each change as one of
the following:

• ADD: Some routine from either the POSIX condition
variable routine library or the Apache Portable Run-
time condition variable routine library was added with-
out that routine being removed from anywhere else in
the same change block within the same revision of a
file. By ”change block”, we mean a piece of the diff
content consisting of many added, removed, and un-
changed lines of code in consecutive order and delin-
eated by something resembling the following: @@ -905,7

+905,6 @@. This change block delimiter means that
the lines of code following the delimiter in the diff con-
tent are lines 905-912 of the old version of the file and
they are lines 905-911 of the new version of the file.
The diff content following this delimiter makes up a
change block, which we will use in the next few classi-
fications as well.
The Algorithm: Given one change block for some file,
if a line appears in an ”add” line (marked by a ”+”),
and the condition variable routine within that line (in-
cluding its parameters) does not appear in a ”remove”
line anywere else in that same change block, then the
line is considered an ADD line.

• REMOVE: Some routine from either the POSIX con-
dition variable routine library or the Apache Portable
Runtime condition variable routine library was removed
without that same routine being added anywhere else
in the same change block within the same revision of
a file.
The Algorithm: Given a change block for some file, if a
line appears in a ”remove” line (marked by a ”-”), and
the condition variable routine within that line (includ-
ing its parameters) does not appear in an ”add” line
anywere else in that same change bloick, then the line
is considered a REMOVE line.

• MOVE: The same routine from either the POSIX
or the APR condition variable routine library was re-
moved from one location and added back elsewhere in

the same change block of the same source code file.
The Algorithm: Given a change block for some file, if
the exact same line (disregarding whitespace charac-
ters) appears in a ”remove” line and an ”add” line, the
line is considered a MOVE. Note that this requires the
whole line to be the same, not just the actual condition
variable routine within the line.

• RECONTEXT: A certain POSIX or APR condition
variable routine was moved only within the same ”re-
place section” as a result of changes to the code sur-
rounding that function call, indicating that the condi-
tions under which the function is called have changed
but the call itself is still necessary in relatively that
same place. I define ”replace section” to be a series
of lines in the diff content such that unchanged lines
(marked by leading whitespace) are followed by re-
moved lines (marked by a leading ”-”) which are fol-
lowed by added lines (marked by a leading ”+”). The
following is an example of a replace section:

a p r s t a t u s t ap queue push (f d qu eu e t ∗ queue , . . .
c o nn s t a t e t ∗ cs , a p r p o o l t ∗ p) ;

− a p r s t a t u s t ap queue pop (f d qu eu e t ∗ queue , . . .
− c o nn s t a t e t ∗∗ cs , a p r p o o l t ∗∗ p) ;
+ ap r s t a t u s t ap queue push t imer (f d qu eu e t ∗queue ,
. . .
+ a p r s t a t u s t ap queue pop something (f d qu eu e t ∗ queue , . . .
+ c onn s t a t e t ∗∗ cs , a p r p o o l t ∗∗ p ,
+ t ime r e v en t t ∗∗ te) ;

a p r s t a t u s t a p qu e u e i n t e r r u p t a l l (f d qu eu e t ∗ queue) ;

The Algorithm: Given just one change block from a file
(a smaller block of change, not the entire diff content),
if one line of code is removed and another line is added
where the condition variable routines are the same but
the lines are not exactly the same, this is considered a
recontextualization.

• MODIF: Some routine from either the POSIX con-
dition variable routine library of the Apahe Portable
Runtime condition variable routine library is left in the
same location with only its condition variable param-
eter changed.
The Algorithm: Given a change block, if any condition
variable routine line is removed and then a new one is
added in the exact same place with a new condition
variable as a parameter, this is considered a modifi-
cation. Interestingly, the algorithm did not find any
instances of modifications.

- if (pthread_cond_init(&queue -> not_empty, NULL)
!= 0){

appears in the same change block as

+ new_cond = pthread_cond_init(&queue-> not_empty,
NULL);

then we would consider this a recontextualize since the
code surrounding the condition variable routine has
changed, along with the line itself, but the routine and
its parameters remain unchanged.

The script resulted in very accurate results and allowed for
easily interpreting the change data into graphical data as
well as performing an organized manual analysis of the mo-
tivation behind the changes.

2.2 Manual Analysis
As stated in the ”Contributions” section above, the goal of
the manual analysis was to break down 60 condition variable-
related changes into three categories and many subcate-
gories. I will describe each of these categories and subcate-
gories in greater detail below:

• REFACTORING:

– Performance: A certain change was made to im-
prove performance, but not to remedy any actual
correctness issues

– Code Reusability/Abstraction: Some func-
tionality was placed into a more reusable struc-
ture or function, or abstraction was added

– Stylistic: Code was moved, added, or removed
for the sake of improving the overall readablity of
the code or for the sake of improving consistency
in function return values, for example

– Removing Unused Functionality: A variable,
structure, or function was removed after being
found unnecessary

– Inexplicable: Certain changes just did not make
sense

• NEW FUNCTIONALITY:

– Synchronization Added With New Code:
A new module or structure or a number of new
functions were added and this new functionality
includes new condition variable routine synchro-
nization

• CORRECTNESS:

– Under-Synchronization: Code was experienc-
ing buggy behavior due to a need for more syn-
chronization and was changed to remedy this

– Over-Synchronization: Code was experiencing
buggy behavior due to excessive synchronization
and was changed to rememdy this

– New Qualifications for Synchronization: Pos-
sibly due to newly added functionality or restruc-
turing elsewhere in the code, the qualifications for
synchronization have changed and the context of
the synchronization lines were changed to reflect
this

– Race Condition: A race condition was occur-
ring involving a condition variable routine and
was changed to remedy this

An overview of these manual analysis results can be found
in tables 1, 2, and 3.

3. SYNCHRONIZATION CHANGES
3.1 Overall Classification Breakdown
As expressed in the graphs below and to the right, the trend
of classifications shows a sharp peak in additions and re-
movals of condition variable synchronization changes in the

Figure 1: Number of Condition Variable Synchro-
nization Lines Added v. Months from Start of De-
velopment

Figure 2: Number of Condition Variable Synchro-
nization Lines Removed v. Months from Start of
Development

Figure 3: Number of Condition Variable Synchro-
nization Lines Moved v. Months from Start of De-
velopment

early stages of development while moves and recontextual-
izations persist at a steadier rate throughout the develop-
ment process.

Table 1: Frequency of Refactoring Changes Per Subcategory in Random Sample
Classification Number of Changes Number of Revisions Containing Changes
Performance 7 2

Code Reusability/Abstraction 3 2
Stylistic 16 7

Removing Unused Functionality 5 2
Inexplicable/Trivial 4 1

Table 2: Frequency of New Functionality Changes Per Subcategory in Random Sample
Classification Number of Changes Number of Revisions Containing Changes

Synchronization Added with New Code 6 3

Figure 4: Number of Condition Variable Synchro-
nization Lines Recontextualized v. Months from
Start of Development

Evidently, the most persistent type of change throughout
the development process is recontextualizing condition vari-
able routines. Note that the Move graph also includes lines
that were moved AND recontextualized, while the Recon-
textualize graph contains only purely recontextualized syn-
chronization functions. This means if a condition variable
synchronization routine was moved from one ”replace sec-
tion” to another and the line surrounding the routine itself
was changed in any way, this change is included in the Move
category instead of the Recontextualization category.

By looking at the graphs, it is evident that lots of synchro-
nization is added and removed in the initial stages but adds
and removes do not persist throughout later stages of devel-
opment except for the (rather rare) case of new functional-
ity. On the other hand, condition variable routines are often
recontextualized as a result of refactoring and remedying
various subcategories of correctness problems.

3.2 Observations
3.2.1 Changes Per Condition Variable

Apache’s HTTPD Server Project relies heavily on reusable
data structures like its ”worker stack” which is specifically
for holding idle worker threads or its ”FD queue”which holds
server sockets. Many of these structures defined in the dif-
ferent Apache modules contain condition variables as part
of their state, automatically receiving these attributes upon

initialization. For this reason, no global condition variables
are ever initialized in the entire body of code. Therefore,
although the study of changes made to different condition
variables can tell us a good deal about common trends in
condition variable change, it is not as conclusive as it would
be if Apache depended on global variables.

Of the 54 condition variable routines (including condition
variable initializations and terminations) used in the head
revision of the project, 16 routines were on the condition
variable ”queue -> not_empty”, with 7 signals and 3 waits.
Here clearly ”not_empty” is an attribute of the FD queue
structure. The next most common condition variable used
in the head revision was ”queue_info ->wait_for_idler”
with 6 routines with 4 signals and 2 waits, where queue_info
is a structure containing various data attributes about the
queue of server sockets.

Of the 86 condition-variable related changes made in the
development history, 25 changes were made to the condi-
tion variable ”queue->not_empty ” (mentioned above) and
34 were made to the variable ”queue->not_full. This can
be explained by the fact that the condition variable at-
tribute ”not_full” was entirely removed (along with all rou-
tines involving it) from the FD queue structure and then
later added back only to be removed again. This accounts
for the high number of modifications involving the vari-
able despite it not being a part of the head revision of
the project. The next most modified condition variable is
”queue_info -> wait_for_idler” at 5 modifications. This
is an interesting statistic since the ”ap_queue_info” struc-
ture was added to the project at revision 94824 –very late
in the development process– but managed to require only
one change on its condition variable after being added to
the project.

From this, it is difficult to draw any concrete conclusions,
however it does seem that the more times a condition vari-
able is used in a project, the more often there will be changes
required for routines pertaining to that condition variable.

3.2.2 Commonly Encountered Changes
This section will refer to the findings of the manual analysis
of 60 randomly sampled changes.

Common Race Condition All 6 of the race conditions
found in this random sampling of changes were caused by
some variation of calling signal, wait, or broadcast without

Table 3: Frequency of Correctness Changes Per Subcategory in Random Sample
Classification Number of Changes Number of Revisions Containing Changes

Under-Synchronization 6 3
Over-Synchronization 1 1

New Qualifications for Synchronization 1 1
Race Condition 6 3

holding the associated mutex. The following is one of the
problematic code segments that caused a race condition to
occur before it was changed:

whi l e (stack−>n e l t s) {
worker = stack−>s tack [−−stack−>n e l t s] ;
worker−>csd = 0 ;
apr thread mutex lock (worker−>mutex) ;
apr thread mutex unlock (worker−>mutex) ;
ap r th r e ad cond s i gna l (worker−>cond) ;

}

Of course, in certain situations this will lead to a race con-
dition. For example, consider the thread T1 encountering
this code segment with stack->nelts == True (this sim-
ply means there are elements in the stack). Then by locking
and unlocking the worker mutex, it wakes up a blocking
thread T2 and a context switch occurs, allowing T2 to pro-
cess and potentially change the value of stack -> nelts.
Now the value that triggered the signal on the worker con-
dition may no longer be true, causing a race condition when
T1 signals and wakes up T3. By moving the signal into the
critical section, this race condition will never happen.

In another of the six race condition cases, wait was called
on the worker wakeup stack’s condition variable after re-
leasing the lock for the stack. Of course, this is actually
known to be incorrect practice. All the other sampled race
conditions were caused by signaling or broadcasting outside
a critical section like the example above, which is less of
a known transgression but still often considered to be bad
practice due to possibilities like the one described above.
Thus, checking for the mistake of condition variable rou-
tines outside critical sections would be an extremely feasible
and helpful feature to implement within automated synchro-
nization tool support.

Adding Abstraction for Code Reusability In a few
cases within the ”Refactoring” category, lines of condition
variable synchronization were removed and placed into new
functions for the purpose of creating abstraction that made
the code more reusable and less redundant. This was due
often to certain pieces of code being repeated, such as the
code that awakens the next idle worker thread in the stack of
idle worker threads. This was removed from multiple blocks
of code and given its own function called "worker_stack

_awaken_next". Changes such as this were common and al-
though they might be hard to fully automate, it would be
easily possible to develop an algorithm that locates often-
repeated pieces of synchronization code and recommends
abstraction.

3.2.3 Trends in Adding New Functionality

When new functionality was added to the project, it was
occasionally necessary to insert new condition variable syn-
chronization along with it. This happened three times in
the random sampling of 60 changes. Upon further analysis
of these 3 cases, the average number of new condition vari-
able routines added alongside new functionality was 3. In
only one of these three cases was a new condition variable
initialized. Otherwise, due to the large use of abstraction
and code reuse in the Apache project, the new signal/wait
routines refered to pre-existing condition variables. This
may be a practice unique to Apache since global condition
variables are not used and specially created data structures
are used for multiple parts of the server.

3.2.4 Move Vs. Recontextualization
Unlike the mutex lock and unlock functions which delineate
critical sections, when condition variable routines are moved,
they are often changed too. It is rare the a signal/wait-
/broadcast function simply stands alone when called. For
example, it was most common to see these condition vari-
able functions in a format like the following:

i f ((rv = apr th r e ad cond s i gna l (wakeup −> cond))
!= APR SUCCESS){

re turn rv ;
}

Therefore, when condition variable routines are moved, they
are often also recontextualized in terms of the condition that
triggers them and the way their return values are stored.
This makes the task of creating automatic algorithms to
detect correctness issues especially challenging. However,
the script which collected the move and recontext data was
easily able to determine which condition variable routines
were the same routine despite having been moved and re-
contextualized by simply considering the function call and
its parameters and disregarding the surrounding code. This
shows that luckily, there is often only one of each condi-
tion variable routine per condition variable in each change
block, allowing for pretty easy detection of these combina-
tion move and recontextualization changes. This will be a
good thing to evaluate in other applications besides Apache
just to make sure this is a general practice and not unique
to the Apache Server Project.

4. CONCLUSION
Although Apache is a relatively small project in terms of
the amount of code it contains (compared to larger projects
also studied by Professor Lu’s lab, such as Mozilla [1]), the
findings of this study present a few ideas that might be
useful to incorporate into future multithreaded development
tools. For example, it seems that Apache’s heavy reliance
on abstraction and highly reusable data structures makes

it so that developers don’t often have to manually imple-
ment condition variable routines and they almost never have
to initialize new condition variables. Evidently, judging by
the strikingly small total number of modifications made to
the condition variable routines within this project through-
out its almost 20 years of development, these practices did
make successful synchronization easier in the long run de-
spite seeming complex upon first glance. While lots of new
functionality was added throughout the course of develop-
ment, only three large functionality additions involved new
condition variable routines and even these additions involved
only an average of three new condition variable routines, in-
dicating that this high level of abstraction and code reuse
allows for code extensibility.

Hopefully the findings of this case study will help inform
some decisions when creating multi-threaded code develop-
ment tools in the future.

5. REFERENCES
[1] R. Gu, G. Jin, L. Song, and S. Lu. What change

history tells us about thread synchronization.

