
DREU Research

Alyssa Byrnes, Graduate Mentor: Edward Talmage, Faculty Mentor: Jennifer Welch

August 26, 2015

Abstract

Cloud computing has increased interest in implementing shared data objects in message-
passing distributed environments. An important feature of these systems is Linearizability.
Linearizability can be an expensive consistency condition to implement. Previously, lineariz-
able message-passing implementations of relaxed queues have been considered and proven
to improve the average time complexity from that of a standard FIFO queue. This paper
expands on this idea and presents an algorithm that implements a k-relaxed lateness queue
in a message-passing system of n processes that tightens the upper bound for the average
time complexity of operations in such a system.

1 Introduction

As cloud computing has gained more ground in the field of computer science, researchers have an
increased interest in finding accurate, efficient ways to implement shared data objects in message-
passing distributed environments. Linearizability provides a valuable correctness condition for
such systems by expressing potentially concurrent operations as discrete, linear events that occur
in the same order at all processors. However, linearizability can be expensive to implement, in
both message-passing [10, 4] and shared memory [3], as processors must communicate somewhat
frequently in order to maintain synchronization of events.

Our approach reduces the average cost of operations in a message-passing system while still
maintaining linearizability. This is done by considering “relaxed” versions of classic data types.
[1] and [6], introduced and formalized this concept.

In [13], Talmage and Welch reiterated four different kinds of relaxed queues introduced by
Henzinger, Kirsch, Payer, Sezgin, and Sokolova ([6]): an Out-of-Order queue, a Restricted Out-
of-Order queue, a Lateness queue, and a Stuttering Queue and discuss the simulation of such
queues in a message-passing system. Talmage and Welch then provided algorithms for both the
Out-of-Order queue and the Restricted Out-of-Order queue in a message-passing system. Finally,
they compared runtimes of dequeue operations in these queues to the traditional FIFO queue in
the following table:

Bounds on Dequeue Time Complexity from [13]
Worst Case Cost Average Cost

Lower Bound Upper Bound Lower Bound Upper Bound

FIFO Queue d+ min{ε, u, d3} [12] d+ ε [12] d(1− 1
n ) d+ ε [12]

Lateness d d+ ε [12] ? d
bk/nc + ε

Restricted-
Out-of-Order

d d+ ε [12] d
bk/nc

2d+ε
bk/nc + ε

1



This paper mainly focuses on the upper bound for the average cost of the dequeue operation
of the lateness queue. In [13], the upper bound is said to be d

bk/nc + ε, but this in fact was not

proven in the paper. This paper will prove that this Upper Bound is in fact correct.
First, we reiterate the conditions of a k-relaxed Lateness Queue. Next, we provide an algo-

rithm that implements this data structure in a message-passing system that is linearizable, and
finally we prove that this algorithm is correct and the upper bound for the average cost of the
dequeue operation is in fact d

bk/nc + ε.

1.1 k-relaxed Lateness Queues

The definition of a k-relaxed lateness queue builds off of the definition of a FIFO queue. In a
FIFO queue, the dequeue operation removes and returns the element that was enqueued at the
earliest time and has yet to be dequeued, called the head. For a k-relaxed lateness queue, the
head does not need to be removed every time dequeue is called, but rather it must be removed in
no more than k dequeues. The following are the formal conditions of a k-relaxed lateness queue.

(C1) Every argument to an instance of Enqueue is unique.

(C2) Every non-⊥ return value of an instance of Dequeue is unique.

(C3) Every non-⊥ value which an instance of Dequeue returns is the argument to a previous
instance of Enqueue.

(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val) is legal iff every
Enqueue(val′,−) preceding Enqueue(val,−) has a matchingDequeue(−, val′) in ρ or there
are fewer than k instances Dequeue(−, val′) that follow the first Enqueue(val′′,−) which
does not have a matching Dequeue(−, val′′) in ρ.

Further, ρ · Dequeue(−,⊥) is legal iff there are fewer than k instances Dequeue(−, val′)
that follow the first Enqueue(val′′,−) without a matching Dequeue(−, val′′) in ρ or every
val′ such that Enqueue(val′,−) is in ρ has a matching Dequeue(−, val′) in ρ.

Condition (C4) specifies the lateness condition. The head must always be dequeued in k
dequeue operations. This means that any other value or ⊥ can be dequeued as long as there
haven’t been k dequeues since the removal of the head.

2 k-relaxed Algorithm for Lateness Queues

2.1 System Model

This is the same system model used in [13]. We have a set of processes p0, . . . , pn−1 acting as
individual state machines. We have three types of events in our system: operation invocations,
message receipts, and timer expirations.

A view of a process is a sequence of steps in which, as defined in [13],

• the old state of the first step is an initial state of the state machine;

• the old state of each step after the first one equals the new state of the previous step;

• each timer in the old state of each step has a value that does not exceed the clock time of
the step;

2



• if the trigger of a step is a timer going off, then the old state of the step has a timer whose
value is equal to the clock time for the step

• clock times of steps are increasing, and if the sequence is infinite then they increase without
bound;

• at most one operation instance is pending at a time

A timed view is a view with a “real time” number associated with every step. A run is a set
of n timed views. A run is admissible if all messages are delivered between d−u and d real time
after sending and each process has a local clock that runs at the same rate as real time, and
all local clocks are within ε of each other. A run is complete when every sent message has been
received and if each timed view either ends at a state where there are no timers set or is infinite.

Every message sent is assumed to take the minimum time of d − u, where d is the message
delay and u is the uncertainty.

2.2 Algorithm Summary

We provide an algorithm for a Lateness k-Relaxed Queue. This algorithm assumes k > 3n where
n is the number of processes in our system. This algorithm is inspired by the algorithm for
Out-of-Order k-relaxed queues in [13]. To increase average performance, we allow any element
of the queue to be dequeued at any time as long as the the earliest enqueued element that has
yet to be dequeued (the head of the queue) is removed at least every k dequeue operations. This
is maintained by each process being able to quickly return the elements that are assigned to it
through the labeling process as long as it hasn’t completed l − 1 =

⌊
k
n

⌋
− 1 dequeues since the

head has been removed. Every element is labeled for a particular process when it is enqueued.
The process with the least number of elements labeled for it in the current state of the queue is
assigned the enqueued element.

When a process pi calls the dequeue operation, it checks to see if the number of local de-
queues it has called since the head was last removed is < l − 1. If this holds, then pi’s lo-
cal count of dequeues is increased by 1 and the process calls a “fast dequeue” by sending
(deq f, x, 〈localT ime, i〉) to all processes including itself. “deq f” informs the processes that
a fast dequeue is being called, x is the element labeled for pi that is being dequeued, and
〈localT ime, i〉 is the timestamp of the operation. The timestamp is used to determine the order
in which operations execute locally. At the time of execution at each process, x will be removed
from the process’ local queue.

If the number of dequeues pi has called since the head was last removed is ≥ l − 1, then the
process calls a “slow dequeue” by sending (deq s, lQueue.head(), 〈localT ime, i〉) to all processes
including itself. lQueue.head() represents the head of the local queue, which is the element that
pi is attempting to remove. At the time of execution, if lQueue.head() is still the head of the
queue, then it will be removed and its value returned to pi. The count of dequeues that have
been called since the head was last removed is reset to 0, and the new head will be determined
so that it can be marked as unavailable for fast dequeues to return. If lQueue.head() is not still
the head of the queue at the time of execution, then some other element labeled for pi will be
removed and its value returned to pi.

3 Local Variables

We specify the local variables our algorithm will use at each process.

3



• count: Count of how many dequeues the process has executed since the head was last
dequeued, initially 0.

• lQueue: Local copy of the simulated data structure, initially empty. Each entry has three
associated fields: a label field which is initially null and can hold a process id, a value
field that contains a unique integer value for the element, and a boolean available, initially
true. Behavior is an extension of a (sequential) FIFO Queue. Operations:

– enq(val): inserts val

– head(): returns, without removing, the earliest enqueued element that has yet to be
dequeued in lQueue, ⊥ if none exists

– deqByLabel(pj): removes and returns arbitrary element labeled pj , with available ==
true, ⊥ if none exists

– peekByLabel(pj): returns, without removing, arbitrary element labeled pj , with
available == true, ⊥ if none exists

– deqHead(): removes and returns the earliest enqueued element that has yet to be
dequeued element from lQueue, ⊥ if none exists

– size(): returns current number of elements in lQueue

– sizeByLabel(pj): Returns number of elements in lQueue with label pj

– remove(val): removes element from lQueue

– label(pj , val): label val with pj

• Pending: Priority queue to hold operation instances, keyed by timestamp; initially empty.
Supports standard operations insert(op, val, ts), min(), and extractMin().

4



4 Lateness Queue Pseudocode

Algorithm 1 Code for each process pi to implement a Queue with k-lateness for k ≥ n, where
l = bk/nc.
1: HandleEvent Enqueue(val)
2: send (enq, val, 〈localT ime, i〉) to all
3: setT imer(ε, 〈enq, val, 〈localT ime, i〉〉, respond)

4: HandleEvent r-Dequeue
5: if count < l − 1 then . Lateness requirement met, Fast dequeue
6: count++
7: x = lQueue.peekByLabel(pi)
8: x.available == false
9: send (deq f, x, 〈localT ime, i〉) to all

10: setT imer(ε, 〈deq f, x, 〈localT ime, i〉〉, respond)
11: else . Slow Dequeue
12: send (deq s, lQueue.head(), 〈localT ime, i〉) to all

13: HandleEvent Receive (op, val, ts) from pj
14: Pending.insert(〈op, val, ts〉)
15: setT imer(u+ ε, 〈op, val, ts〉, execute)

16: HandleEvent ExpireTimer(〈op, val, ts〉, respond)
17: if op == deq f then return val.value . R-DEQUEUE returns
18: else return ACK . ENQUEUE returns

19: HandleEvent ExpireTimer(〈op, val, ts〉, execute)
20: while ts ≥ Pending.min() do . While Pending contains operations with earlier timestamps
21: 〈op′, val′, ts′〉 = Pending.extractMin()
22: executeLocally(op′, val′, ts′)
23: cancelT imer(〈op′, val′, ts′〉, execute)

24: function executeLocally(op, val, 〈∗, j〉)
25: if op == enq then
26: lQueue.enq(val)
27: let m = minh{lQueue.sizeByLabel(ph)} . Process with least number of elements labeled.
28: lQueue.label(pm, lQueue.tail)
29: if lQueue.size() == 1 then
30: lQueue.head().available = false

31: else if op == deq f then
32: lQueue.remove(val)
33: else . Slow dequeue
34: if val.value == lQueue.head().value then . If val is still the head, dequeue head
35: count = 0 . Reset local count
36: ret = lQueue.deqHead().value
37: lQueue.head().available = false
38: else . Don’t dequeue head
39: ret = lQueue.deqByLabel(pj).value
40: if j == i then count++ . Increase local count
41: if j == i then return ret

5



5 Proof

Lemma 1. All invoked operation instances return in at least ε time.

Proof. There are three possible outcomes of the ENQUEUE and R-DEQUEUE events: enq,
deq f , and deq s.

• When enq is invoked, a response timer is set for ε time (Line 3). When the response timer
expires, ACK is returned (Line 18).

• When deq f is invoked, a response timer is set for ε time (Line 10). When the response
timer expires, the value being dequeued is returned (Line 17).

• When deq s is invoked, say by process pj , (deq s, lQueue.head(), 〈localT ime, j〉) is sent to
all processes including pj . When pj receives the message, the operation is added to the
local Pendingj (Line 14) and the timer for execution is set for u+ ε time (Line 15). Either
the timer for this operation expires in u + ε time or another timer for an operation with
a larger timestamp expires, and executeLocally(. . .) is called (Line 22). The value ret is
returned (Line 41) to the invoking process pj .

If another timer for an operation op′ with a larger timestamp expires, then the slow dequeue
might return before u + ε time passes. op′ has a larger timestamp which means that it
is invoked at most ε earlier the slow dequeue in real time, so the soonest op′’s timer can
expire is ε before the slow dequeue’s own timer at its invoking process would go off, giving
d as the minimum time for a slow dequeue. It is assumed that d > u and u > ε, so d > ε.

Construction 1. Define the permutation π of operation instances in a complete, admissible run
of Algorithm 1 as the order given by sorting by the timestamp of op, ts(op), for each instance op.

We want to show that this construction respects timestamp order.

Lemma 2. Each process locally executes all invoked enqueues and dequeues in timestamp order,
i.e., in the same order the operations occur in π.

Proof. Since the invoker of each operation sends a message with the information about the
operation to all the processes (including itself), and since no messages are lost, every process pi
puts every operation in Pendingi.

We now argue that every operation op in Pendingi is eventually locally executed by pi. When
pi gets the message about op, it inserts op into Pendingi and sets a time for u + ε time in the
future. If the timer goes off, then op is locally executed at pi. The timer is cancelled only if op
is locally executed as a result of an earlier timer going off (cf. Lines 22-23).

Now we show that the operations are locally executed at pi in timestamp order. Suppose in
contradiction there is an operation op1 that is locally executed after operation op2 but ts(op1) <
ts(op2). Furthermore, assume that op2 has the largest timestamp of all operations that are locally
executed at pi before op1. Since operations are removed from Pendingi in timestamp order, it
must be that op1 is not in Pendingi when op2 is extracted for local execution.

Let t1 be the real time when op1 is invoked (at some process q1) and t2 be the real time
when op2 is invoked (at some process q2). Since the clocks are synchronized to within ε and op1’s
timestamp is less than op2’s timestamp, it follows that t1 < t2 + ε.

The earliest that pi can receive the message about op2 and put it in Pendingi is t2 + d− u,
while the latest that pi can receive the message about op1 and put it in Pendingi is t1 + d.

6



• Case 1: Suppose pi locally executes op2 because op2’s own timer goes off. The earliest this
can happen is t2 + d− u+ u+ ε = t2 + d+ ε. From above, we have t2 + d+ ε > t1 + d, i.e.,
this happens after pi has put op1 in Pendingi, contradiction.

• Case 2: Suppose pi locally executes op2 because the timer of another operation, say op3,
expires. Then it must be that ts(op3) > ts(op2), and thus op3 also has the property of
being locally executed before op1. This contradicts our choice of op2 as the operation with
the largest timestamp that is locally executed before op1.

Notation 1. For each prefix π′ of π and each i, define t(π′, i) as the real time when process pi
has just finished locally executing the last operation in π′.

Lemma 3. For all processes pi and pj and every prefix π′ of π, lQueuei at time t(π′, i) is the
same as lQueuej at time t(π′, j), ignoring the values of the available fields of the elements.

Proof. By Lemma 2, pi and pj locally execute operations in the same order. The only aspect of
the lQueue local variables that is changed outside of the executeLocally function is the available
flag (Line 8). Requiring that the min function accessed in Line 27 is deterministic gives the
result.

Lemma 4. The sequence π produced by Construction 1 respects the real-time order of non-
overlapping operations in the execution.

Proof. Suppose in contradiction there is an operation op1 that returns before operation op2 is
invoked, but op1 follows op2 in π. By Construction 1, it follows that ts(op1) > ts(op2). Since
each operation takes at least ε time to return, it can be concluded that op1 starts at least ε time
after op2 starts. But since the clock skew is at most ε, it cannot be that ts(op1) < ts(op2).

5.1 Legality

The following lemmas assist in proving the legality of the queue in every execution of the algo-
rithm.

Lemma 5. At t(π′i), if lQueuei.size() ≥ 1, lQueuei.head.available == false for every prefix
π′ of π and every i ∈ [0, n− 1].

Proof. This proof utilizes induction on the sequence of operation instances in permutation π
created by Construction 1.

• Base Case: Initially, lQueue is empty across all processes (lQueue.size() == 0). Therefore,
the lemma is vacuously true.

• Inductive Step: Assume for all prefixes of π′, lQueuei.head.available == false and
lQueuei.head is the same for all processes pi, i ∈ [0, n − 1]. Both events “R-DEQUEUE”
and “ENQUEUE” must be considered.

– ENQUEUE(val): Due to Lemma 2, it is known that the first enqueue invoked by
a process will be the first enqueue to be locally executed by each process. First,
(enq, val, 〈localT ime, i〉) is sent to all and the timer is set (Line 3). Then the operation
is added to Pendingj for all processes pj (Line 14) and the timer for execution is
set (Line 15). Either the timer expires for this operation or another timer for an
operation with a larger time stamp expires, and executeLocally(. . .) is called for the

7



enqueue (Line 22). Because op == enq, val is enqueued into lQueuej (Line 26).
If lQueuej was empty immediately before the enqueue, lQueuej .size() == 1, so
lQueuej .head().available is declared false (Line 30). Every process will have locally
executes the enqueue by t(π′, j), where the enqueue operation is the last operation in
pi′, and every lQueuej will have the same elements by Lemma 2, so the head will be
consistent across all processes. If lQueuej wasn’t empty, then lQueuej .size() increases
by 1, so lQueuej .size() > 1 (Line 29). Therefore, the availability of the head hasn’t
changed.

– R-DEQUEUE(): If lQueue.peekByLabel(pi) 6= ⊥ and counti < l then a fast dequeue
is invoked. First, (deq f, x, 〈localT ime, i〉), where x is an element being dequeued de-
termined by the peekByLabel(pi) function, is sent to all and the timer is set (Line 10).
Then the operation is added to Pendingj for all processes pj (Line 14) and the timer
for execution is set (Line 15). Either the timer expires for this operation or another
timer for an operation with a larger time stamp expires, and executeLocally(. . .) is
called to execute the fast dequeue (Line 22). Because op == deq f , some item that is
available is dequeued (Line 32), which, by the inductive hypothesis, means the head
isn’t dequeued and therefore hasn’t changed and will remain unavailable.

Else, a slow dequeue is invoked. First, (deq s, lQueue.head(), 〈localT ime, i〉), is sent
to all. Then the operation is added to Pendingj for each process pj (Line 14) and the
timer for execution is set (Line 15). Either the timer expires for this operation or an-
other timer for an operation with a larger time stamp expires, and executeLocally(. . .)
is called to execute the slow dequeue (Line 22). Because op == deq s, then the pro-
cess checks if the head is still present. If the head is present (Line 34), then it will
be dequeued (Line 36). In this case, the head now must change. The new head is
determined, which by Lemma 2 would be the same element for every process, and set
to be unavailable (Line 37).

Else if the head is not present (Line 38), then a deqByLabel(. . .) will be called (Line
39), which can not remove the head and therefore the head will stay the same and
remain unavailable.

Lemma 6. Two slow dequeues will not both return the same value.

Proof. For two slow dequeue operations, deq1 and deq2, let ts(deq1) < ts(deq2). It has been
proven that operations will execute in time stamp order, so deq1 will locally execute before deq2.
If the head isn’t available when deq1 executes, then another resource labeled for the process
invoking deq1 is dequeued (Line 39). When deq2 is executed, the process checks if the head is
still present (Line 34). If it isn’t, then another resource labeled for the process invoking deq2 is
dequeued (Line 39). By Lemma 2, labeling is consistent across all processes, so deq1 and deq2
will not return the same value given that they are invoked by different processes. If the head
is still available when deq1 locally executes, the head is removed from lQueue (Line 36). By
Lemma 5, the head won’t be available and therefore can’t be returned by deq2.

Lemma 7. A slow dequeue deq from some process pi not return the value x identified as the
local head in Line 12 on behalf of another slow dequeue with an earlier timestamp removing x
from lQueuei in between deq’s invocation and local execution.

Proof. A slow dequeue will result in the returning of ret (Line 41). If the value val identified by
the process invoking the slow dequeue pi as the head at the time of invocation equals the value

8



identified by pi as the head at the time of execution, then ret is set to equal that value (Line
36). Therefore, the case where the head won’t be returned is when val does not equal the global
head.
There are two instances in which the head of lQueuei, x1 could change. Firstly, a new head,
x2 could be chosen without x1 being removed. Secondly, x1 could be removed from lQueuei.
However, if a new head is chosen, then that means that x2 was enqueued before x1, which, by
Lemma 2 implies that ts(x2) < ts(x1). If this were the case, then x2 would already be the head,
which gives us a contradiction.

Therefore, the head must be removed from lQueuei. A fast dequeue can not remove the head
by Lemma 5, so it must be removed by a slow dequeue.

This change must happen between local invocation and execution of the slow dequeue deq
because if the head was locally dequeued before invocation, then the dequeue would have locally
executed and the process would know that the head is new. If the head was dequeued after
execution, then deq would have already executed.

Theorem 1. For any execution of the algorithm, the permutation π given by Construction 1 is
legal by the specification of a lateness k-relaxed queue.

Proof. 1

After every operation in π, the queue is legal if the following properties, which were previously
defined, are met.

(C1) Every argument to an instance of Enqueue is unique. The property of uniqueness
holds because it is assumed that every item being enqueued is unique.

(C2) Every return value of an instance of Dequeue is unique. Assuming every dequeued
item has been previously enqueued and every enqueued item is unique, then every dequeued
item will be unique as well. However it must also be shown that every item that is enqueued
can only be dequeued once. Therefore, we must examine every combination of dequeues
and make sure they can not possibly return the same value.

• Two fast dequeues. For a fast dequeue, every resource in the queue can only
be removed by the process it is labeled for, and this labeling scheme is consistent
across all processes by Lemma 2. This prevents one item being dequeued by two
different processes. One process will not dequeue an item labeled to it more than
once because the item is immediately removed from lQueue when the fast dequeue is
locally executed (Line 32).

• Two slow dequeues. Lemma 6 proves that two slow dequeues can not both return
the same value.

• A fast dequeue and a slow dequeue. Proof by contradiction. Assume that
some fast dequeue deqf invoked by process pi and some slow dequeue deqs invoked by
process pj both return the same value val. Fast dequeues only return elements labeled
to their invoking process so val must have label i in lQueuei. Labels are consistent
across processes (Lemma 2), so by the time pj invokes deqs, val will also have label
i in lQueuej . It must be taken into consideration if deqf and deqs are being invoked
by the same process, or in other words i = j.

1Some aspects of this proof are inspired by the proof of similar properties of unrestricted out-of-order k-relaxed
queues in [13].

9



– i = j: If pi and pj are in fact the same process, then deqf and deqs can not both
be pending at the same time. This would mean that whichever operation with an
earlier timestamp would invoke and execute before the other process could invoke
and execute. Every execution of a dequeue results in the removal of the dequeued
element from the local queue, so the element dequeued by the earlier operation
will not be in the local queue at the time of the second operation’s invocation.

– i 6= j: If deqf has a smaller timestamp than deqs, then deqf would execute before
deqs executes, and val would no longer be in lQueuej at the time deqs executes.
Therefore, deqs must have a smaller timestamp than deqf .
If pi and pj are two different processes, then deqs would have to be returning an
item labeled for pi. The only time a slow dequeue returns a value not labeled
for its invoking process is when it dequeues the head. Therefore, val must be
the head of lQueuej at the time of invocation and execution of deqs. However,
a fast dequeue can not return the head, so val must not be the head of lQueuei
at the time of invocation of deqf , which is at most ε time after deqf ’s invocation.
All processes execute every operation in the same order and once an element is
the head of a local queue, it can only cease to be the head after its removal from
the queue, so we can conclude that pj has executed some operation deq′s that has
removed the head of lQueuej by the time of deqs’s invocation and pi has not yet
executed deq′s by the time of deqf ’s invocation.
An operation in locally executed at all processes within u+ ε time, and deqf was
invoked between the local execution of deq′s at pj and the local execution of deq′s
at pi. Therefore, deqf must have been invoked at most u+ ε real time after deq′s
was locally executed at pj .
Since deqs is a slow dequeue that removes the head of lQueuej , then we can
conclude that countj has increased from 0 at the time of the execution of deq′s
to at least l at the time of the execution of deqs. Every fast dequeue takes at
least ε time to return, so at least l ∗ ε time has passed between the pj ’s local
execution of deq′s and invocation of deqs. Therefore, the execution of deq′s at pi is
at most (u+ ε)− (l ∗ ε) = u+ ε(1− l) real time after the invocation of deqs. The
invocation of deqf has a larger timestamp than the invocation of deqs and occurs
before the local execution of deq′s at pi, which means that deqf was invoked at
most u+ ε(1− l) real time after deqs. If we assume a reasonably large relaxation
of k ≥ 3n then l ≥ 3 and u+ ε(1− l) ≤ u− 2ε. In reference [4], it is determined
that ε ≥ u(1− 1

n ), making u− 2ε ≤ u(−2 + 2
n ) < −u < 0. This tells us that deqf

was invoked −u after deqs which is a contradiction.

(C3) Every non-⊥ value which an instance of Dequeue returns is the argument to
a previous instance of Enqueue. The only possible value that can be returned by a
dequeue function is a value from each process pi’s local queue lQueuei. The only way an
item can be added to lQueue is through an enqueue. Therefore, only enqueued items can
be dequeued.

(C4) If ρ is a legal sequence of operation instances, then ρ ·Dequeue(−, val) is legal iff
every Enqueue(val′,−) preceding Enqueue(val,−) has a matching Dequeue(−, val′)
in ρ or there are fewer than k− 1 instances Dequeue(−, val′) that follow the first
Enqueue(val′′,−) which does not have a matching Dequeue(−, val′′) in ρ.

Further, ρ·Dequeue(−,⊥) is legal iff there are fewer than k−1 instances Dequeue(−, val′)
that follow the first Enqueue(val′′,−) without a matching Dequeue(−, val′′) in ρ

10



or every val′ such that Enqueue(val′,−) is in ρ has a matching Dequeue(−, val′) in
ρ.

This is the property that states that at the end of the local execution of each operation in
π the amount of values or ⊥s that have been dequeued by all processes since the head was
dequeued, j, is less than k.

There are two cases to consider: slow dequeues that don’t return the head and fast de-
queues.

By Lemma 7, it is known that the only time a slow dequeue, deq1 doesn’t return the head
is when another slow dequeue deq2 executes between its invocation and local execution. If
process pi is invoking deq1, no fast dequeues are going to be invoked or executed by pi in
between the invocation and execution of deq1. So, when deq2 executes, counti = 0, and
when deq1 executes, a resource labeled to pi is dequeued and counti is increased by 1 (Line
6), making counti = 1, which maintains that counti <

⌊
k
n

⌋
for k > n.

For all processes pi, a fast dequeue only invokes under the condition that counti <
⌊
k
n

⌋
(Line 5), where counti is the local count of dequeues that have occurred since the head
was last removed. Therefore the most items that can be removed by fast dequeues is some
integer j < n ∗

⌊
k
n

⌋
≤ k.

5.2 Average Runtime

The following definition is from [13].

Definition 1. We will call a run heavily loaded if every Dequeue is linearized after a prefix of
π in which there are at least k more instances of Enqueue than instances of Dequeue.

Theorem 2. The average time complexity per Dequeue in any heavily loaded, complete admissible
run for Algorithm 1 is no more than d

bk/nc + ε.

Proof. Consider the view of a single process pi. counti is initially zero, and pi will invoke only
fast dequeues until counti ≥ l − 1, so at least l − 1 fast dequeues will take place, each taking ε
time, before a slow dequeue occurs. The worst case scenario is the one in which slow dequeues
occur most frequently. At most, a slow dequeue will be invoked every l − 1 dequeues. A slow
dequeue will d− u + ε+ u = d+ ε time from the time of its invocation to execute at pi. Then,
counti will be set to 0, and l more fast dequeues can occur. Thus the following pattern emerges:
every l operations, l− 1 fast dequeues occur and 1 slow dequeue occurs, resulting in the average

runtime: ε(l−1)+d+ε
l = d

l + ε.

6 Conclusion

We have provided an example of another relaxed data type that achieves higher performance
in message-passing systems. First, we reviewed the definition of a k-relaxed lateness queue and
gave an example algorithm for a message passing system to implement it. Then we proved the
correctness of this algorithm.

Moving forward, we would like to see if this algorithm can be proven to work for a less
stringent condition than k > 3n. Additionally, it would be ideal to modify the algorithm so that
⊥ is returned less frequently.

11



References

[1] Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In: Principles of Distributed Systems - 14th International Conference
(OPODIS), 395-410 (2010)

[2] Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020-1048 (1994)

[3] Attiya H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev, M.T.: Laws
of order: expensive synchronization in concurrent algorithms cannot be eliminated. In: Ball,
T., Sagiv, M. (eds.) Principles Of Programming Languages (POPL), 487-498. ACM (2011)

[4] Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Transactions on
Computer Systems, 12(2), 91-122 (1994)

[5] Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y.,
Srivastav, S., Wu, J., Simitci, H., Haridas, J., Uddaraju, C., Khatri, H., Edwards, A.,
Bedekar, V., Mainali, S., Abbasi, R., Agarwal, A., ul Haq, M.F., ul Haq, M.I., Bhardwaj,
D., Dayanand, S., Adusumilli, A., McNett, M., Sankaran, S., Manivannan, K., Rigas, L.:
Windows Azure Storage: a highly available cloud storage service with strong consistency.
In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles, 143-157
(2011)

[6] Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation
of concurrent data structures. In: Giacobazzi, R., Cousot, R. (eds) Principles Of Program-
ming Languages (POPL), 317-328. ACM (2013)

[7] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3), 463-492 (1990)

[8] Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9), 690-691 (1979)

[9] Lamport, L.: On interprocess communication. Distributed Computing, 1(2), 77-101 (1986)

[10] Lipton, R.J., Sandberg, J.D.: PRAM: A scalable shared memory. Technical Report CS-TR-
180-88, Princeton University, Department of Computer Science, (1988)

[11] Vogels, W.: Eventually consistent. Communications of the ACM, 52(1), 40-44 (2009)

[12] Wang, J., Talmage, E., Lee, H., Welch, J.L.: Improved time bounds for linearizable im-
plementations of abstract data types. In: International Parallel and Distributed Processing
Symposium (IPDPS), 691-701 (2014)

[13] Talmage, E., Welch, J.L.: Improving Average Performance by Relaxing Distributed Data
Structures. In: Distributed Computing Lecture Notes in Computer Science, 421-438 (2014).

12


