
Using the Robot Operating System (ROS)

To Operate the Calliope2SP

By Gwendolyn Tennell

1. Introduction

Robot research needs more students interested in robotics to continue revolutionizing the

industry. Depending on the environment and the need; creating robot software is not easy.

Building robots is all about timing, doing several things at once, and about interfacing with an

active and changeable world. Robots do not have the senses of hearing, touch or vision. They do

not know how to solve an unexpected problem or feel an object. Neither do they have the ability

to adapt to situations on their own. Therefore, robots must be programmed. Programming robots

involves the monitoring and manipulation of services that often occur at the same time. The

Calliope2SP was designed by the Tekkotsu Lab at Carnegie Mellon University. It is an Asus

netbook which is mounted on an iRobot Create (see figure 1). The Calliope2SP is a good robot to

use within robotic research, as well as robotic competitions, because of its ability to do multiple

maneuvers.

Fig. 1

2

Robotic competitions are events in which students program a robot to compete against

other robots to achieve a goal. Robot competitions provide challenges and encourage research in

autonomous technology. To program a robot for competition, a developer considers the number

of joints and their geometric arrangement to dictate an intended task. The speed, size and load

capacities are also considered (Craig, 11). Robotic competition challenges that look on purpose,

rather than competition, and on autonomous, rather than not, are showing promise (Anderson, 2).

2. The Robot Operating System

The open source Robot Operating System was released in 2013. Its framework offers a

collection of developer tools, libraries, and conventions used across wide robotic platforms. The

aim is to simplify the task of creating complex autonomous robot behavior. Although training in

ROS can be difficult, it is a free platform which encourages shared development. It provides

tools and libraries for the beginner, as well as the advanced programmer. Programmers may use

the Robot Operating System, a Linux-based environment, to work collectively with programmers

on other servers, such as Microsoft Windows, and Mac OS X. There is also diversity with

Rosjava, the native Java ROS client library, which has empowered ROS-based software to be

written for the Android OS; and Roslibjs, a JavaScript client library, which has been developed

to integrate software into the Robot Operating System through any standard web browser (Robot,

par 3). The Robot Operating System enables the sharing of coded algorithms between

researchers by providing a shared architecture on which to run them (see figure 2). ROS also

provides beginning and advanced tutorials, and the Turtlesim simulation for training in robotics.

3

Fig.2

The Robot Operating System makes it easy to incorporate new hardware and external libraries; it

uses a shared structure to swiftly tie in new modules. ROS is versatile, and can integrate C++,

Python, Java, Lisp, or Octave based codes. Since students have broad varying qualifications,

ROS is the industrial strength choice for some researchers. Larger numbers of research groups

are creating code targeted at ROS (Thread, 2). The Robot Operating System is complex, but

scalable and autonomous programming is accessible. Since coding may sometimes be

4

frustrating, my approach is to offer a starting point with pre-coded C++ ROS packages for the

Calliope2SP. The packages may reduce some of the complexities of using ROS, and still allow

for growth. My research corrected the errors faced while building the workspace for the

Calliope2SP packages in ROS. As they advance in skill, users can leverage the large libraries of

existing ROS modules to expand their knowledge of operating the robot.

3. Related Work

 An operating system (OS) is software that manages computer hardware and software

resources and provides common services for computer programs. The operating system is an

important factor of the system software in a computer system. Application programs typically

need an operating system to function (Operating, 1). The diagram in figure 3 displays how the

Fig. 3

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Operating_system_services
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/System_software

5

OS, programs, and the robot connect with each other. I have chosen 3 commonly used platforms,

Player Project, Microsoft Robot Developer Studio (RDS), and Tekkotsu to compare to the Robot

Operating System. All are open source and support robotic research. They also allow for code to

be written in multiple languages, and can operate across different processors. Like ROS, they all

have beginning and advanced tutorials for operating robots.

3.1. Player Project

Fig. 4

Simulation is a common way to begin programming in robotics, and Player/Stage project

is a robot interface that is often used (Player, par. 1) (see figure 4). The Player Stage simulation,

which has been around longer than Microsoft Robot Developer Studio, Tekkotsu or ROS, allows

focus on algorithms. Therefore students may learn software without the hardware issues. This is

6

a good starting point, and Anderson believes that if a student decides to enter robotic

competitions, Player/Stage can also be used with low and high cost platforms (Player Stage, 1).

3.2. Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio, released in 2006, provides a window-based interface for

programming a wide range of robots. Hobbyists controlling toy robots and serious roboticists

controlling complicated robots can use the same software development kit (SDK). The central

core supports distributed processing and does not require any specific robotic OS. The

application resides on a Web server and the robot communicates with the application using a

wireless or wired interface (Rea, par. 4). Figure 5 depicts real-time monitoring of robotics

sensors. The main programming language of the Robotics Studio is C#, and it also provides a

simulation environment.

Fig. 5

http://en.wikipedia.org/wiki/Visual_C_Sharp

7

3.3. Tekkotsu

Tekkotsu was released in 2010. The Tekkotsu framework offers a collection of tools, a

GUI interface, and can share C++ objects across processors (Tira-Thompson, 2). Tekkotsu uses

Mirage simulation and the Chiara robot, as shown in figure 6, as is an excellent starter platform

for robotics programming. Because Tekkotsu runs a massive 200 megabyte library file plus a 30

megabyte executable, it is much slower to develop low-level code than ROS. Because of its

speed, it is less desirable as a general research tool than ROS, but it is a good teaching tool.

 Fig. 6

8

4. Calliope 2SP Packages

 Five packets are needed to maneuver the kinematics controlled robot, Calliope2SP, in the

Robot Operating System. Kinematics control is “the coordination of the links of a kinematics

chain to produce the desired motion of the robot” (Anh, 1). The Actuator Array Driver performs

standard works, such as subscribing and publishing to a command topic, and parsing joint limits.

The Calliope package houses the launch, the urdf and the yaml files. The Calliope Driver

contains the KinematicSolver header file and the C++ codes for nodes and demos. The

Dynamixel Array allows any number of controllers to add new behaviors to the robot. Finally,

the Dynamixel Driver package provides low-level IO for the Dynamixel servos. Each packet

contains a CMakeLists.txt, where the programmer configures the packages to build on. For

example, add or target libraries and executables, find other dependent packages, or create

messages. Each packet also contains a package.xml, which list dependencies. The packets are

built into a catkin workspace in ROS.

5. Discussion and Conclusion

 Through this research I found that all of the robot platforms were able to perform most

of the same applications. The Robot Operating System had the edge because of its ability to use a

shared structure to quickly tie in new modules. By creating the tutorial

www.calliope2sptutorial.weebly.com, I may provide a stress-free foundation to introduce

undergraduates to robotics. This tutorial not only produces a vehicle in which to introduce a

novice to robotics, but may also prepare an undergraduate for challenging robot competition

events. The code in the tutorial can be built upon to move the Caliope2SP autonomously. A

beginning Calliope2SP tutorial may encourage and increase an undergraduate’s confidence level

9

towards a fun and interesting journey in programming robots. I recommend that this research is

continued, if not by me, by an individual or a group that would finish and build the Calliope2SP

tutorial into the Robot Operating System.

6. Acknowledgments

 I would like to thank Dr. Monica Anderson for her help as a mentor. I would also like to

thank her for the use of the Calliope2SP robot and the robotics lab at the University of Alabama.

I would like to thank Connor Lawson for access to his research files. I would like to thank the

Distributed Research Experiences for Undergraduates (DREU) and the National Science

Foundation (NSF). This work is supported in part by DREU and the NSF grant CNS-1303156

7. References

1. Anderson, M.; Jenkins, O.C.; Osentoski, S., “Recasting Robotics Challenges as Experiments

[Competitions],” in Robotics & Automation Magazine, IEEE, Vol 18, No 2, (2011).

2. Anderson, M.; Thaete, L.; Wiegand, N., "Player/Stage: A Unifying Paradigm to Improve."

Department of Computer Science [The University of Alabama]: 1-5.

3. Anh, Ho Pham Huy, and Nguyen Thanh Nam. "Novel Adaptive Forward Neural MIMO

NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics." Intech.

N.p. Web. 11 Nov. 2014

4. Craig, John J., Introduction to robotics: mechanics and control. 2nd ed. Reading, Mass.:

 Addison-Wesley, 1989. Print.

5. "Operating System." Wikipedia. Wikimedia Foundation, 11 Feb. 2014. Web. 8 Nov. 2014.

6. "The Player Project." Player Project. Web. 8 Nov. 2014.

7. Rea, Sara. “An Introduction to Programming Robots with Microsoft Robotics Studio.” An

10

Introduction to Programming Robots with Microsoft Robotics Studio. N.p., n.d. Web. 10

Sept. 2014. http://www.devx.com/dotnet/Article/32729.

8. "Robot Operating System." Wikipedia. Wikimedia Foundation, 11 Jan. 2014. Web. 8 Nov.

 2014.

9. "Thread: Tekkotsu vs. ROS." Trossen Robotics Community RSS. N.p., n.d. Web. 18 July 2014.

10. Tira-Thompson, E.; Touretzky, D.S., "The Tekkotsu robotics development environment,"

Robotics and Automation (ICRA), 2011 IEEE International Conference on , vol., no.,

pp.6084,6089, 9-13 May 2011.

