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Introduction: 

 In a disaster scenario, a team of robots could be used to explore a damaged or potentially 

dangerous building in order to provide maps of the area before human rescuers enter. The benefit 

of using a distributed algorithm is that individual robots can be damaged or lost without 

compromising the algorithm as a whole. My DREU summer project was to implement a 

distributed exploration algorithm on Scribbler robots. This raised a number of challenges, mostly 

regarding the specific hardware limitations of the Scribblers. Although some of these hardware 

limitations could be overcome with software solutions, ultimately our wall-following based 

implementation failed because the obstacle sensor on which the basic navigation was based was 

not as robust as first assumed. 

Past Work: 

 Previous work in the area of distributed exploration algorithms has focused on both 

communication protocols as well as exploration/navigational logic. Ludwig and Gini (2006)
1
 

explicated the use of wireless signal intensity as a means of determining robot proximity instead 

of relying on sensors to recognize nearby neighbors. It was also demonstrated that dispersive 

coverage can be achieved without the robots having explicit knowledge of relative neighbor 

locations, as proximity information alone is adequate.  

Damer et. al (2006)
2
  proposed two different distributed algorithms for small robots: 

Clique-Intensity, which uses a connectivity graph of dispersed robots weighted by signal strength 

in order to triangulate the robot formation for maximal area coverage, and  Backbone Dispersion, 



2 
 

which maintains a stable connected group of stationary robots as the “backbone” and allows 

other robots to explore freely as long as a robot is either in range of the backbone or in range of 

another robot in range of the backbone. The backbone can be expanded with more robots to 

increase its reach.  

Kurazume and Hirose (2000)
3
 describe an algorithm known as Cooperative Positioning 

System, which assigns each robot to one of two groups. One group explores freely while the 

other group remains stationary as a landmark for the exploring group. The two groups switch 

roles in a leapfrogging fashion in order to explore the area. 

Jensen and Gini (2013)
4
 propose the Rolling Dispersion Algorithm, which is very similar 

to the algorithm on which our Scribbler implementation was based. In the Rolling Dispersion 

Algorithm, robots explore as far as they can while staying in signal range of the group of robots 

and drop beacons where they have explored in order to mark rooms and leave a path back to the 

exit of the area. The algorithm uses a system of sentry and explorer robots which allow the group 

to move to explore the area. Robots can send requests for other robots to explore an area beyond 

the group range in an unexplored direction, at which point an available robot will respond and 

push forward.  

Algorithm Description: 

 We attempted to implement an algorithm that was based off the Rolling Dispersion 

Algorithm known as the Sweep Exploration Algorithm (SEA), described in Jensen et. al (2014)
5
. 

Our ultimate implementation was quite different from the original SEA due to simplifications 

required by the Scribbler hardware. SEA works by having the group of robots disperse and move 

into the branches of the area, having the group as a whole explore one branch in full before 

retracted out of the branch and moving on to the next unexplored path in a manner quite similar 
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to a depth-first search. Areas that have been explored are marked by beacons, which serve to 

both prevent repeated exploration of dead ends/explored areas as well as providing a pathway 

back to the entrance for the robots to follow once they have finished (this is how branch 

retraction is handled in general). By dropping beacons behind them, robots towards the back of 

the group can be called up to the frontier of the currently explored branch. Proximity is 

determined by wireless signal range and ideally 

all robots remain in range of at least one other 

robot so the group moves together.  Figure 1 

shows the 5 different behaviors involved in the 

SEA, which were adapted and condensed for 

our later implementation.       

SEA attempts to minimize communication load, so there are 7 different state messages 

that can be sent between robots and beacons in order to coordinate the desired behaviors, as seen 

in Figure 2: 

 

 

 

 

 

 

 

 

 

Figure 1: Behaviors of SEA [Jensen et. al (2014)] 

Figure 2: State Messages of SEA [Jensen et. al (2014)] 
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Implementation Design: 

 The much-simplified and greatly modified attempt to implement this algorithm defined 3 

behaviors and 4 different states (as opposed to SEA’s 5 behaviors and 7 states). In the main loop 

of each robot, it is the states—in addition to environmental information—that determine what 

behaviors will be executed.  Charts describing these behaviors and states are found below:  

 

 

 

 

 

 In simple terms, the implementation works by having a single explorer robot follow the 

wall until it comes upon an opening, at which point it reads a nearby sign to get information 

about that intersection or room. If it is explored, the explorer ignores it and continues along the 

wall. If it is unexplored, the explorer stops and calls for the closest available robot to explore 

beyond it, as being “in-range” is defined as being only one intersection away from another robot 

Behavior Description 

FollowWall Uses obstacle sensor to follow right-

hand wall until an opening is 

discovered. 

Guard  Do nothing, remain in place. 

 

ExploreRoom After finding an opening in the wall and 

the numbered intersection is marked as 

a room, “explore” it. 

State Description 

Offline As the starting state, waits until it is needed as 

explorer. As ending state, sits and waits for 

other robots to finish. 

Explorer Follows wall until it comes upon opening at 

which point it should call for another robot to 

explore further. 

Idle The state for when a robot is no longer offline 

but is waiting for an incoming request. Robot 

will enter Idle state after calling for an 

explorer. 

Responding Has received request to be explorer and 

decided that it is the closest available robot, 

follows wall to the intersection to which it has 

been called and explores beyond the robot that 

made the request. 
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in the group. Robots that are called to explore further will follow the wall until they arrive at the 

intersection they must explore. This way, all branches and rooms will be explored in a depth-

search-first fashion until every room/intersection is marked as explored. The path-retraction as 

present in the SEA isn’t present in our implementation, as the robots simply follow the wall in 

only one direction. Retracting out of a fully explored path just means following the wall all the 

way around until the exit of the branch is detected.  

 Because the SEA algorithm involves the navigation of and communication between a 

number of agents, our implementation was executed using an object-oriented paradigm in which 

each robot was represented as an object of the RobotObject class. The entire protocol is run by 

the Controller.py program, which defines the intersection and room layout and then connects to 

all the robots for which is has been given the COM port number. Each robot begins in the 

OFFLINE state and their locations are all set to be at the starting intersection. The Controller 

then sets the first robot in the robot list to the state EXPLORER and then loops through each 

robot, executing their main function as long as not all of the robots have returned to start, at 

which point all of their states would again be OFFLINE and the algorithm would terminate.  

 Although the original algorithm makes heavy use of beacons, because of the lack of 

available hardware, point-to-point communication, and any way for the Scribbler to “drop” a 

beacon we instead implemented each intersection as an IntersectionObject which could be set to 

be “explored.” This way, when a robot arrives at an intersection and reads the sign it will be able 

to query the intersection as to whether or not it is explored—if it is, the robot will keep going and 

if not it will stop and call another robot to explore it. These IntersectionObjects were also what 

were used to build the pre-stored area information about the area, as each IntersectionObject 

keeps a list of other intersections in range of themselves. When a robot signals the computer that 
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it has arrived at a certain numbered intersection by reading the encoded sign, the robot’s location 

is updated to be at that intersection. Thus, any robots located at other intersections that are set to 

be in range of that robot’s present location are considered to be neighbors to that robot and can 

receive requests and simulated point-to-point messages from it.  

 The sign encoding was done with a 3-bit encoding system on pink paper cylinders each 

with 3 horizontal stripes that could be either black or white. This makes it easy for robots to take 

a picture, detect the pink sign, and then read the stripes like a barcode to figure out what number 

intersection or room they were at in order to find out whether or not it had been explored. Robots 

take pictures after detecting room openings and after they are done exploring a room in order to 

find out where they are in relation to explored/unexplored areas. 

 The algorithm terminates once every robot is in the OFFLINE state, as this is the state the 

robot enters once it has passed the final sign (the first robot to reach the final sign will set that 

sign to “explored”). If every robot has done so, it means that all of the other explorable area signs 

have been reached and explored, as the robots will not move on as a group until they have 

explored all of the areas around them.  

Hardware Limitations: 

 Ultimately, implementing this algorithm (or similar distributed exploration algorithms) 

on the Scribblers requires a number of compensatory modifications that move functions that 

would otherwise be delegated to specific hardware over to software simulations that use the 

hardware that is available. 

Communication: 

 The lack of point-to-point communication ability means that communications amongst 

the robots must be simulated by what ends up being a highly centralized system. Furthermore, 
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because of this limitation the functions of the dropped beacons in the original algorithm is 

instead built into the centralized system as well, with areas being marked as explored or 

unexplored in a prewritten central database. Proximity, instead of being determined by the robots 

within the environment through signaling, was handled entirely by the central system comparing 

the robots’ reported locations to the pre-stored information about the layout of the area. 

 The simulation of point-to-point communication is handled by the RobotObject class’s 

function addIncomingRequest( ), which can be accessed by other robots when they need to call 

another robot to an intersection to continue exploration. When a robot needs backup, it will loop 

through its own stored list of neighboring robots and add requests to these robots. This list of 

neighbors is updated each time the robot reaches a new intersection by using pre-stored 

information about the area’s layout to find out how far away the other robots are and which ones 

can receive a request for help. addIncomingRequest( ) takes an IntersectionObject as a 

parameter, which tells the requested helper where they are needed to continue exploration. The 

closest available neighbor robot should be the one to respond. Although addIncomingRequest( ) 

and the neighbor-calling process is distributed amongst objects in the code, when run on the 

Scribblers every communication request is all done on the central controlling computer—it is 

never the robots actually communicating with each other, but rather their object representations 

on the central computer using location information (from the intersection signs) as reported by 

the actual robots in the area. As mentioned before, this approach also requires the central 

computer to have accessible information about the entire area that is to be explored so the robot 

objects can know who their neighbors are without using something like signal intensity to figure 

out proximity. 

 



8 
 

 

Sensing and Off-board Navigation 

 Second, the robots’ vision and ability to quickly process images was made slower 

because of the constant need to do offboard image processing—meaning that the robots’ 

navigational capacities are limited by the speed of the Bluetooth connection. This is also why the 

initial line-following attempts were failures, as it affects every sensing capability on the robot. 

Because of this, the cameras were used only to read signs in the environment that then allowed 

the robot object to query the central controller for pre-stored information about the area.  

 The Scribbler’s camera is useful to examine the environment, and our implementation 

uses it in order to read colored signs around the area. Each robot object has an instance of the 

class SignReaderObject, which takes care of all of the sign-reading image processing functions. 

However, the usefulness of the camera is impacted by the speed at which images can be    

Figures 2 & 3: Scribbler robot diagram with sensors (Fluke not attached). [pololu.com] 
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processed. Processing the image on the central computer can take some time, although this time  

can be minimized by how the image processing is coded. What also takes time is for the image to 

travel over Bluetooth from the Scribbler to the computer, and then for the Scribbler to receive the 

computer’s navigational instruction based on the image it took.  

This process is what happens with every sensor. The line-sensor, obstacle sensor, light 

sensor, and others all take readings from the environment and then send the results over 

Bluetooth to the computer. It is up to the computer to use the sensor results to decide on a next 

action for the connected robot, which it then sends back over Bluetooth. This causes a 

communications lag that made the line-sensor unusable (due to its requirement of high precision) 

and other functions slower and less accurate. Although the Scribblers come with an on-board, 

firmware installed line-following function that does not need to send the sensor results over 

Bluetooth, updating the robot’s firmware to use with Calico/Myro gets rid of this function. Our 

attempts at re-instating this capability did not work—hence why we attempted to use the obstacle 

sensor instead, as it required less precision to navigate successfully and was not as affected by 

the Bluetooth lag. 

In essence, having all of the Scribbler’s instructions located outside of the robot itself 

means that each robot in our implementation really exists in two parts—the object representation 

in the central computer, and the physical robot that does what the off-board portion tells it to. 

Having a communications lag within each robot’s individual functioning is not ideal and 

seriously impacts the navigational capabilities of the Scribblers.  
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Obstacle Sensor and Unreliable Wall-Following: 

 Third, our approach had us using the obstacle sensors of the robot in order to move 

through the area and detect room openings, which on the newer Fluke models lack lateral sensing 

capabilities. This problem was initially unknown because although looking at the physical 

Fluke2 hardware one sees only one infrared emitter, there is no explicit indication (in 

documentation or otherwise, as far as we know) that this piece only points forward. It is 

especially confusing because the obstacle sensor still returns a list of three often wildly different  

 

 

 

 

 

Figures 4 & 5: On the left, the older Fluke model with right, center, and left infrared 

emitters. On the right, the newer Fluke model with one central infrared emitter. 

[betterbots.com] 

values, giving the impression that it is still acting like the first Fluke and is returning a Left, 

Center, and Right infrared obstacle-distance value. However, it turns out that these three values 

are all coming from the same sensor although it is unknown exactly why there are three different 

readings. The Scribbler/Fluke documentation available online does not seem to have made this 
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change explicit, but after speaking to one of the developers they confirmed that there is indeed 

just the one forward sensor on the newer models.  

Although the robots would still sometimes find the desired 

openings (in some test setups finding the opening almost every 

single time), having a forward-pointing sensor looking for wall gaps 

to the right-hand side of the robot was not sufficiently accurate 

when we tried using it in our final test area. While the first two 

hardware limitations can be compensated for with  

Figure 6: Final test area setup     software solutions (although they do in some sense undermine the 

decentralized and exploratory purpose of the algorithm), this final problem cannot really be 

circumvented satisfactorily.   

Conclusions: 

The description of the final implementation makes it clear that many 

modifications/simplifications were made to the algorithm in order to try and make it work on the 

Scribbler hardware. Many hardware limitations had to be dealt with by using software 

simulations to augment the robots’ capabilities. The first category of limitation was robot 

communication—the lack of point-to-point communication meant we had to simulate point-to-

point communication within the central computer. The second category was in the robots’ 

delayed sensing capabilities caused in part by the lag in the Bluetooth communication, impacting 

the robots’ navigation. The third category is which the infrared obstacle sensor specifically, and 

the change made on the newer Flukes that took away lateral sensing and made it so our wall-

following protocol was unreliable in detecting rooms and intersections. The first two categories 

of limitations could be augmented by software, but the third could not be reliably overcome.  
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Hence, it would appear that if Scribblers are to be used for an exploration algorithm one 

ought not rely on the newer model’s obstacle sensors, at least not in the context of wall-

following and room entrance detection. If the line-following abilities can be implemented in the 

robots’ firmware successfully, this approach (alongside some of the aforementioned software 

modifications) might be more successful in building a working demo. However, perhaps there is 

an alternative small and cheap robot model more suited to this task. 
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