
Mobile Applications and Unreliable Networks:
A Case Study in Standardizing Mobile Application Development

Alana Ramjit
 Department of Computer Science at Columbia University

Advised by Professor Yuanyuan Zhou and Xinxin Jin
 Department of Computer Science and Engineering at University of California –

San Diego

Abstract
Growing pressure in a crowded mobile application
market suggests that developers ought to
streamline the development process in order to
eliminate frustration-inducing bugs that will cause
users to abandon an application. This paper
presents a case-study on bugs that emerge under
network stress, categorizing the most common
triggers of those bugs and defining application
misbehavior. It also discusses a need to organize
standardized practices that can automate
prevention of bugs that can be generalized to all
sources of application errors.

1. Introduction
Numerous studies have pointed to the
consistent trend of growth in mobile
applications available on the market. A 2013
estimate from Canalys estimates that the Apple
App Store and Google Play each have around
800,000 apps available each, with numbers
sure to have grown in the past year.1 This
figure does not account for Blackberry and
Windows apps, putting a reasonable estimate at
around 2 million apps.

However, the actual usage data of these
apps give significant insight as to end-users
engagement and response to the growth in
availability of mobile apps. Latest Nielsen
reports indicate that there is an upper limit on
the number of apps per month that users will
interact with though they may spend
significantly more time on those apps once
downloaded.2 Additionally, users have a very
low tolerance for application failure; only 16%
of users are willing to try an app more than two

times if it crashes.3

Consequently, there is significant need
to streamline application development for a
better end-user experience on the first try. Most
of the work on improving mobile application
behavior has focused on diagnosing and
reporting bugs and crashes. This paper furthers
that discussion by addressing what to do when
those bugs are found and how to eliminate
them from occurring at early developmental
stages rather than patches after release.

Grasping end-user behaviors and
attitudes is important for developers seeking to
maintain or introduce apps in a crowded
market. Most importantly, trends in end-user
behavior can and should be used to
intelligently shape, standardize, and streamline
the development process. The mobile app
development life-cycle has emerged relatively
ad-hoc, with few industry standards or best
practices for testing or app behavior in place.

This paper attempts to address the
community-wide issues in application
development by presenting a brief case study
of network connectivity related bugs and
crashes in real-world mobile apps. It does the
following:

(1) Provides a field test of eight applications,
four from large-resource development
companies and four from small, independent
developers to investigate the question of what
constitutes application misbehavior? Is it
simply crashing and freezing or do testing

frameworks need to extend their analysis to
find other serious common patterns of
misbehavior that may cause users to leave? It
also provides a survey of current practices in
dealing with network stress to determine what
“best practices” have been developed as well
as indicating patterns of misbehavior among
applications.

(2) Examining bug-fix and crash report data
from open source Android applications that
will showcase both the lack of and need for
industry wide standards in responding to the
non-trivial issue of unreliable networks. It
analyzes them for network conditions which
are most likely to trigger application
misbehavior from an environment perspective
and what the cause might be from a
development perspective.

(3) This case study is meant to be a jumping-
off point for further investigation into raising
questions about how to standardize application
behavior and streamline development in a
mobile context.

2. Related Work and Background
Network connectivity stress is chosen for a
number of reasons. First, it is an example of a
test case that occurs frequently “in the wild”
but not necessarily in test environments.
Dropped networks due to a sudden move to a
low-reception area, slow or busy data
connections, or a switch from WiFi to 3G or
vice versa can all trigger unexpected and
potentially missed behaviors that would not be
picked up in a test environment.

Secondly, designing and implementing
a robust, standardized protocol for how to
respond to dropped connectivity is not a trivial
problem. It raises issues regarding ideal
behavior—how long should an application wait
to receive confirmation from the network?
How should the main UI thread respond while
waiting? If data is lost being sent, should it be
automatically re-sent or alert the user?

 Thirdly, this is an issue that is unique
to mobile applications, and highlights the need
for new testing and development practices for
mobile that go beyond what exists for web and
desktop applications. Not only should these
questions be answered for the specific problem
of network connectivity, but they should be
raised about other common bugs in mobile
applications.

Several other studies and papers have
investigated this problem and corroborate the
claim that network connectivity stress is a
leading cause of mobile application failure.

A call for standardization—Dongsong Zhang
and Boonlit Adapt called for a standardization
of best practices of testing mobile applications
similar to what has evolved for desktop
applications.4 They cite network connectivity
as one of the mobile-specific issues needed to
be addressed and provide a general framework
for data collection and usability testing.

Demonstrating the need for standardizing
network connectivity --others have attempted
to either diagnose common causes of crashes
and bugs in mobile applications or improve
ability to diagnose these causes in the field.
Most of these have focused on developing
dynamic test environments rather simply
analyzing static binaries in order to pinpoint,
trigger, and diagnose bugs. Many of these have
found that network loss and inability to handle
changes in connectivity is one of the most
common causes of bugs.

The first example of this is VanarSena.5

VanarSena uses “fault injection monkeys
(FIMs)” to trigger crashes internally and
simulates bad external conditions such as
improper user/sensor input or poor network
connection. The most relevant data from this
study shows that assuming a reliable network
and server or failure to handle poor network
connectivity aggregated to the largest root
cause of application failure. Out of the
nearly 3000 bugs uncovered, network-related

failure caused over 60% them, ranging from
poor connectivity, bad or malformed data, or
HTTP error codes that were unhandled.

Similarly, Caiipa is a testing framework
that goes a step beyond UI automation to
prioritize which real-world contexts are most
relevant to a particular app, then simulates
exposing the application to high stress in those
contexts.6 The results have shown a significant
improvement in discovering performance bugs
and crashes. This is a step forward because it
anticipates the unique challenges of a mobile
application: that it is mobile, and therefore
liable to being exposed to a wide variety of
competing environmental factors that cannot
be tested by pure UI automation. Caiipa
uncovered an illustrative example in which the
Twitter app frequently crashes while switching
from WiFi to 3 or 2G network.

Automating standards for network man-
agement—Procrastinator comes closest to
realizing the potential of standardizing mobile
development.7 It presents a tool which takes
existing application binary and injects custom
code to solve a known problem. Specifically, it
prevents mobile apps from pre-fetching data
unnecessarily which can cause wasted data
usage, a serious turn-off for users who pay per
byte of data usage. It reformulates a standard
programming practice of pre-fetching as much
data as possible, adapts it to mobile-specific
platforms, and then automates the process of
developing for this platform. When calling for
industry wide evaluation and standardization,
Procrastinator serves as a base model for what
can be achieved in the field of network
connectivity stress as well as in other mobile
contexts.

3. Methods
In order to investigate the prevalence of
network connectivity induced bugs and
crashes, this paper examines applications
designed for the Android platform, largely
because of it's open source nature that allows

developers of all types to contribute
applications.

3.1 Investigating the Android Platform
First, we examine the Android development
library for the standard functionality it
provides for guiding developers in network
access. Then we break down the most common
conditions under which an application might
need to access the network.

3.2 Application Behavior Case Study
Secondly, we perform a case study
examination of eight applications available in
the GooglePlay store, four of which are highly
popular applications developed by companies
with presumably large amounts of resources,
and four of which come from smaller
developers and have fewer downloads (<
10,000). The question asked by this case study
is what sort of application behavior do we
expect under network stress and what actually
happens?
The eight applications that were chosen for this
case study, as previously stated, can be divided
into two categories based on number of
downloads and the resources available to the
development team.

Those with large resources and high
downloads chosen were: (1) QuizUp, a popular
quiz game in which users play against each
other to gain the highest score on a quiz in a
particular theme, (2) Gmail, Google's
immensely popular e-mail client, (3) Facebook
Messenger, the stand-alone messaging client
for social media giant Facebook, and (4)
Pandora, one of the most popular internet radio
streaming applications in the PlayStore.

Those with smaller resources and fewer
downloads were: (1) VirginRadio, a lesser
known Internet radio streaming application, (2)
HoverChat, a standard SMS app designed to
replace the native messaging app on Androids,
(3) MailWise, an alternative e-mail handling
client, and (4) Whova, a native mobile app to
coordinate events and groups.

Figure 1. Table of application behavior under network stress for “large-resource” group

All of the apps were tested under three basic
network conditions: strong WiFi signal as a
baseline for comparison, no network
connection, and a weak network connection
defined as 1 or fewer bars on a 3G network. All
applications were tested on the same
hardware/software, a Samsung Galaxy S3.
Only these three basic network conditions were
tested for the sake of testing simplicity; other
potential real-world situations such as a switch
from a fast connection, e.g. WiFi, to a slower
connection, e.g. 3G or 2G were too difficult to
reliably simulate.

3.3 Open Source Issue Tracker Analysis
 Previous studies discussed above have already
established that network-related errors are one
of the most common sources of bugs in mobile
applications. In order to determine which
network conditions trigger these bugs, 44 bug
reports from open source applications or issue
trackers that cite network-related errors are
examined. From this sample, we quantify what
types of network stress tend to cause bugs in
practice.

4. Results

Basics of the Android Platform
We identify seven major categories of network
access. These are (1) send a message or post
such as to a thread or via SMS, (2) load a new
page, (3) sync the cache, (4) database access

such as log-in/sign-up or view high scores, (5)
p2p connection such as for multi-player games
or location based chats, (6) download a file or
stream media, and (7) coarse GPS assistance
which usually pings WiFi or network towers
instead of activating location sensors. The
latter of these is the least important because
GPS does not necessarily require network
access to function.

Within the Android development library
itself, we find three major functions and classes
for regulating network access. The function
getSystemService() returns an object that is
castable to the type ConnectivityManager,
which itself is capable of retrieving network
access information. The functions
getActiveNetworkInfo() and isConnected() can
be used to check if there is a valid network; if
the former is not null and the latter is true, it
generally assumed safe to retrieve data. Finally,
the AsyncTask class can be extended to prevent
potentially very slow network operations from
occurring in the main UI thread and causing a
sluggish, unresponsive app.

While several other functions and
classes exist to regulate and manage network
connectivity, particularly for p2p connections,
these are the core functionalities provided for
accessing both WiFi and network data.

Case Study
The results of field testing on “big”
applications are displayed in Figure 1, and the
results of testing on “small” applications in

Figure 2. Table of results for smaller resource application behavior under network stress
Figure 2. Each app was tested for its core
functionality, with benign or successful
behavior defined as the application performing
exactly what was intended OR the application
failing, alerting the user, and doing nothing
else. Furthermore, the eight applications were
selected such that it had full coverage of the six
core categories requiring network access.

Behavior highlighted in red indicates
problematic behavior that is completely
unintentional, such as repeated and intermittent
freezing and crashing, automated responses
that incur high data usage or battery drainage,
or data loss. Orange-highlights indicates
behavior that may be intentional but still
problematic, such as automatically re-sending a
message once the network is found. This may
be problematic because, for instance, some
SMS messages are time sensitive (“Meet me in
10 minutes!”) and perhaps should not be sent
without the user being aware.

The expectation was that larger and
more popular apps would have developed a
more robust stance towards handling
unpredictable network connectivity. In general,
this proved true. However, even within this
small sample size, developers seem far better
equipped to respond to the condition of no
network rather weak network signals.

This emphasizes an important point
regarding application development and testing.
While developers know to check for an
existing connection, real world environments
fluctuate far more than simply on and off.
These factors need to be anticipated; almost
every application displayed some type of

undesirable behavior under a weak signal, a
common phenomenon in the daily life of users

Failing Gracefully
At a minimum, applications should notify the
user that their intended interaction with the
application failed and then stop. The most
optimal behavior demonstrated by HoverChat
and Facebook Messenger involved saving the
state and data and presenting the user with a
menu of options on how to proceed. The worst
behaviors were those such as Pandora, which
was erratic and unpredictable, QuizUp which
dumped the data from a game on an unstable
network, Whova and Mailwise which
presented a positive verification of sending or
posting that had not actually gone through, and
Virgin Radio which simply failed to notify the
user of anything and cut off.

Clearly, optimal application behavior is
dependent on the function of the app. However,
some guidelines can be pulled from this case
study. Data to be sent over a network should be
saved before it is lost, applications should track
whether a network transfer was successful and
notify users of unsuccessful transfers at a
minimum. At this point, an app may gracefully
exit. Optimally, the application would present
the user with a menu of appropriate options
depending on what the intended behavior was.

Network Triggers

The findings from the case study are verified
by the larger sample of bug and patch reports
examined, outlined in Figure 3 below.

Of the 44 issue reports, 29 of them were
triggered when users switched between WiFi
and 3G or on a slow network. Only 6 of them
occurred when there was no network,
indicating that developers likely anticipate the
condition of no network and handle this
instance appropriately, and 9 of them were
present under all conditions and were likely
server-side issues.

Figure 3. Most frequent network triggers

5. Conclusion and Future Work
The findings of this exploration cumulatively
lead to three important insights.

First, application misbehavior is not
limited to freezing and crashes and
encompasses a wide range of unintended
behavior. Limiting pre-launch testing to simply
uncovering crash/freeze bugs potentially
misses many frustrating bugs that can put off
potential users. Optimal application behavior
varies depending on the function of the
application; nonetheless, in the case of network
connectivity, it takes only a brief survey of
existing practices in order to find a generalized
understanding of what the minimum standard
for application behavior ought to look like.

Secondly, application testing needs to
fully appreciate mobile context. The most
frequent triggers of bugs and worst behavior
uncovered in this study came from weak
signals or network switches that are incredibly
common for the average user using a mobile

device but are not necessarily producible in
laboratory testing.

Thirdly, the most reasonable solution
for eliminating network connectivity bugs at
the root appears to be expanding standard
library functions to include testing for and
alerting of network switches or weak signals.
The current Android platform framework and
training tools provide functionality for
checking whether or not a network connection
is available and encourage boilerplate null
checks for an available connection.
Consequently, it is simple for developers to
take advantage of existing library functions and
respond to the condition of absent networks. A
similar functionality and boilerplate for weak
and reset connections would likely encourage
better standard practice for those contexts as
well.

Developing a robust and responsive
framework for network access is the next step
from this case study; likewise, repeating this
analysis for other common sources of bugs and
user frustration such as battery usage, bad user
input, or malformed sensor data in order to find
the access point for developing standardized
best practices would also be fruitful.

References
[1] "Top IOS and Android Apps Largely
Absent on Windows Phone and BlackBerry
10."Canalys. N.p., 23 May 2013. Web. 26
Sept. 2014.

[2] "Smartphones: So Many Apps, So Much
Time."Nielsen, 1 July 2014. Web. 26 Sept.
2014.

[3] Perez, Sarah. "Users Have Low Tolerance
For Buggy Apps – Only 16% Will Try A
Failing App More Than Twice | TechCrunch."
TechCrunch. N.p., 12 Mar. 2013. Web. 26 Sept.
2014.

[4] Zhang, Dongsong, and Boonlit Adipat.
"Challenges, methodologies, and issues in the

usability testing of mobile applications."
International Journal of Human-Computer
Interaction 18.3 (2005): 293-308.

[5] L. Ravindranath, S. Nath, J. Padhye, and H.
Balakrishnan. Automatic and Scalable Fault
Detection for Mobile Applications. In Proc. of
ACM MobiSys, 2014.

[6]Liang, Chieh-Jan Mike, et al. "Caiipa:
automated large-scale mobile app testing
through contextual fuzzing." Proceedings of
the 20th annual international conference on
Mobile computing and networking. ACM,
2014.

[7] Ravindranath, Lenin, et al. "Procrastinator:
Pacing Mobile Apps’ Usage of the Network."
Proceedings of the 12th annual international
conference on Mobile systems, applications,
and services. ACM, 2014.

