
Using Recommender System Techniques to Predict the Words a

Child Will Learn Based on Current Vocabulary

Kelly Macdonald

Westmont College

kmacdonald@westmont.edu

Professor Eliana Colunga

University of Colorado, Boulder

colunga@colorado.edu

Introduction

Recommender systems, which use machine

learning algorithms to solve problems such

as recommending content or a product to a

user, are widely used for commercial

purposes. For example, Netflix uses a user's

preferences to recommend movies the user

has not yet seen but might enjoy, and

Amazon uses past purchases and item

viewings to recommend items that a user

might like to buy in the future [1].

For these experiments, several of these same

algorithms and techniques are applied to a

new problem: predicting the words a young

child will learn next based on the words that

child knows now. Experiments on the

vocabularies of young children often require

the assistance of a parent or guardian to

indicate which words the child already

knows, and being able to recommend new

words to the parent might make it easier to

gather this information. In addition, it is

hoped that algorithms such as these might

reveal patterns in children's vocabularies and

increase understanding of the speech

learning process. As more is learned about

the ways in which humans acquire speech, it

becomes easier to identify atypical learning

patterns, which in turn can help diagnose

problematic learning patterns.

Recommender system techniques generally

deal with matching users to items. For these

experiments, the users become children and

the items become words. Recommender

system algorithms tend to take either a user-

based or item-based approach [1]. A user-

based approach uses the interests (or in this

case, knowledge) of similar users to

recommend items to the given user. An

item-based approach looks at items similar

to the items already associated with the

given user and attempts to find similar items

to recommend. Both of these approaches are

taken here: the k-NN and American CDI

norm algorithms described take a user-based

approach, while the probabilistic, SVD, and

noun/attribute algorithms can all be (at least

loosely) classified as item-based approaches.

However, the “straw man” algorithms to

which these algorithms are compared do not

quite fit into either category.

Data

Three data sets were used for these

experiments: the child/word set, the

noun/attribute set, and the American CDI

norms set.

Child/Word Set

The child/word set contains cross-sectional

data on 100 children and their knowledge of

677 words, in the form of a matrix (with a 1

indicating that the child knows the word and

a 0 otherwise). In addition, the child set

contains information such as each child’s

gender, age in months, and percentile (how

the child compares with other children at

his/her age based on the number of words

he/she knows). Vocabulary sizes range from

5 to 661. Ages range from 12 to 32 months.

This data set was used for all of the methods

described here, though not all of the

information was used for each method. The

list of words included in this data is a subset

of the Macarthur-Bates Communicative

Development Inventory (MCDI) word list.

For these experiments, 677 of these words

were used.

Noun/Attribute Set

The noun data set contains information

about how well each of the nouns fits into

each of 97 categories (or where they fall on

a scale). Each noun has a score from 0 to 10

(inclusive) for each category (or attribute).

To obtain these scores, a group of adults was

asked to score each noun in each category,

and the average of each of these score sets

was used as the final score for a given word

and attribute. The list of nouns is separate

from the list of words in the child/word set,

which contains words of many parts of

speech. There are 327 words that are

featured in both of these lists, and only these

words were used for algorithms that utilized

the noun/attribute set. This data set was only

used for some of the methods described

here, and when it was used, all non-nouns

were excluded from the experiment. If a

child’s vocabulary contained fewer than two

nouns, the child was excluded from the

experiment.

American CDI Norms Set

The American Communicative

Development Inventory (CDI) norms set [2]

contains information about the percentage of

children who know each word in the set at

each age from 16 to 30 months

(incrementing one month at a time). There is

one set of these norms for female children,

another for male children, and one for both

combined. This data set contains all of the

words included in the child/word set. It was

gathered from 1461 children.

Measuring Accuracy

To test the accuracy of each of these

algorithms, one fifth of each child’s

vocabulary was removed, and the algorithm

was used to try to recommend it back. Once

a list of recommended words had been

compiled, the number of correct

recommendations was divided by the total

number of recommendations to get the

percent correct. Each algorithm was run 100

times, and the average accuracy rate and

variance over all of these runs was recorded.

The exception to this is the SVD algorithm;

this algorithm was run multiple times, but

the results of only one iteration were

recorded. When an algorithm required

information, such as probabilities, to be

gathered from the data before

recommendations were made, this

information was gathered only from the 80%

of the child’s vocabulary that was not taken

out, in order to realistically simulate a real-

world recommendation scenario.

The constraints of the experiment had some

effects on the results that must be taken into

account prior to analysis. Because only a

few hundred words were used, and some

children knew nearly all of those words,

there was little guessing involved in making

correct recommendations for those children

with large vocabularies. If very few words

are not in a child’s vocabulary, then there

are very few possible wrong

recommendations, and the algorithm will

always recommend all or most of the words

correctly.

On the other hand, if a child does not know

many words, there will be very little to base

predictions on (though this does not matter

for these “straw man” algorithms), and there

will be hundreds of possible wrong answers

and few correct ones. For a child who knows

only 5 words and has one of those words

removed for the purpose of recommending it

back, the algorithm will either predict that

one word correctly and have 100%

accuracy, or predict incorrectly and have 0%

accuracy. The latter case is much more

probable. Unlike the somewhat

unrealistically high accuracy found in

recommendations for children with large

vocabularies, this trend represents a real-

world recommendation scenario fairly

accurately.

“Straw Man” Algorithms

To identify the lower bounds of success, the

accuracy and variance of two very simple

“straw man” algorithms were measured: one

of these algorithms simply recommended

random words for each child, and the other

calculated which words were most

commonly known to all of the children and

recommended the most commonly known

words that each child did not already know.

The first of these algorithms had an average

success rate of 21.5%, while the second had

an average success rate of 52.0%. The

average accuracy of both algorithms

increased as vocabularies got larger, while

the variance decreased. This happened

somewhat more gradually for the second

algorithm than for the first.

While both algorithms produce a higher

variance in results for children with small

vocabularies than for children with large

ones, the second algorithm has a much

higher variance for small vocabularies

because the correct words were actually

guessed more frequently. This is strikingly

different from the random

recommendations, which had 0% accuracy

and 0 variance for the smallest vocabularies

before the trend of high variance appeared.

It is realistic to assume that these trends in

variance would exist in a real-world

recommendation scenario involving just

about any number of vocabulary words.

K-NN

K-NN approaches are commonly used for

recommender systems because they are

inherently related to the recommender task

of identifying like-minded users [1]. Three

different k-NN algorithms were

implemented with the child/word set.

The first k-NN algorithm simply assigned

each child a similarity score based on the

number of words they had in common with

the given child. Then, each word received a

score equal to the number of top K most

similar children who knew it, and the words

with the highest scores were recommended.

Several values of K were tried, and the value

of K that scored highest was selected and

recorded. This algorithm is equivalent to the

second “straw man” algorithm,

recommending the most popular words in

overall, if K is equal to the total number of

users, but it can theoretically give different

results for lower values. However, running

this algorithm several times revealed that the

percentage of accuracy was highest for

values of K very close the number of users,

and no one particular value of K stood out.

Furthermore, the percentage of accuracy was

not statistically significantly different from

that of the algorithm which recommended

the most popular words overall. Although

this algorithm appears to be superior to the

first “straw man” algorithm, it is at best

exactly the same as the second.

The second algorithm was similar to the

first, but each word received a score that

was equal to the sum of the scores of the top

K children who knew it, and the words with

the highest scores were recommended. This

gives more weight to words that are known

by children more similar to the current child,

and it is not equivalent to the second “straw

man” algorithm. Several values of K were

tried for this algorithm as well, and the value

of K that scored highest was selected and

recorded. This algorithm had an average

accuracy rate of 50.5% for the best value of

K. Interestingly, this algorithm also scored

highest with values of K that were near or

equal to the total number of users. Although

it is not technically equivalent, it performed

very similarly to the second straw man

algorithm.

For the third algorithm, words were scored

the same way as in the first, but each child’s

similarity score received a boost based on

that child’s other attributes. Binary attributes

like gender, language, number of languages

spoken, and hardness of hearing were worth

equal boosts if a child’s value for that

attribute matched the given child’s value.

For attributes like age, percentile, and words

spoken, boost was proportional to the

difference between the value for the current

child and the value for the child being

scored, and the child’s similarity score was

multiplied by this value. K was selected the

same way as in the first two algorithms. This

algorithm had an average accuracy rate of

51.1% for the best value of K and, like the

other k-NN algorithms, scored highest for

very high values of K.

Patterns in average accuracy and variance

for these algorithms were largely the same

as the patterns found in the two “straw man”

algorithms.

Probabilistic

Next, four probabilistic algorithms were

implemented. This involved calculating the

probability that a child knows each word

based on each other word. (For example, the

probability that a child knows “mommy” if

that same child knows “daddy” was

calculated.) These probabilities were

calculated on a training set. When making

recommendations, each word’s score was

calculated in a different way for each

algorithm.

 For the first algorithm, the score of each

word was calculated by using the “inclusive

or” probability formula to combine the

probabilities that the child knew that word

based on each word that the child already

knew. This algorithm had an accuracy rate

of only 26.5% - barely better than random,

and far worse than recommending the most

common words.

For second algorithm, the probabilities were

instead combined as a simple sum. This

algorithm was accurate 49.1% of the time, a

huge improvement over the first, but still not

enough to beat the second “straw man”

algorithm.

The third algorithm used the same scoring

method as the second algorithm, but also

added the probabilities that the child knew

the word based on the child’s gender, age,

percentile, and number of words spoken. It

then recommended the words with the

highest scores. This algorithm had an

accuracy rate of 52.5% percent, about the

same as the second straw man algorithm

(technically higher, but not enough to be

considered a statistically significant

improvement).

Finally, the fourth algorithm used a different

method than the first three for determining

the relationships between different words.

The child/word matrix was multiplied its

own transpose so that each row and column

of the result represented a word, and each

cell contained a number related to the

number of times that the word for that row

appeared in a child’s vocabulary with the

word from that column. These numbers

were then summed to calculate word scores.

The numbers gathered through this method

amplify the relationships between words,

and the algorithm is a lot more efficient than

the first three. However, it was only accurate

39.9% of the time.

Interestingly, although average accuracy

increased with vocabulary size, much like

the “straw man” and k-NN algorithms,

variance also increased with vocabulary

size. This trend in variance is the exact

opposite of the trends in variance displayed

by the previously described algorithms.

Latent Semantic Analysis

Latent semantic analysis is a popular

technique for recommender problems that

involve processing text. For example, a

search engine will use this technique to take

a user’s query and match it with relevant

documents. The process involves singular

value decomposition, a matrix

decomposition method that draws out latent

“concepts” from the data and gives both the

query and each of the documents a score

based on how much it aligns with each

concept. For purpose of these experiments,

each word was treated like a query, and a

child’s vocabulary was treated like a

document. On this data set, just two latent

concepts were detected. The distance of

each word from each child was measured as

the cosine of the angle between the child

vector (containing the child’s score for each

concept, based on his/her vocabulary) and

the word vector (containing the word’s score

for each concept). The the idea is that this

method should be able to pick up on subtle

patterns in children’s vocabularies, patterns

which are not easily observable by simply

looking at the words. However, this

algorithm was only accurate 30.6% of the

time.

The accuracy of these algorithms increased

with vocabulary size, and so did the

variance, as with the probabilistic

algorithms.

Noun Features

Four algorithms made use of the

noun/attribute set, which contained

information about how well each noun fit

categories like “is round” and “has face,” or

fell on scales such as small to large and light

to heavy.

The first algorithm involved calculating the

amount of each attribute that each child had

in his/her vocabulary based on the sums of

the attribute scores for each of the words

that the child knew. The child’s score for

each attribute was then multiplied by each

word’s score for that attribute, and these

values were summed across all the attributes

to determine each word’s score. This

algorithm had an accuracy rate of 27.2%

The second algorithm was similar to the

first, but the child’s score was an average

rather than a sum, and the cosine formula

was used to determine each word’s score.

These algorithms had an accuracy rate of

25.1%.

The third algorithm was like the second one,

but an entropy calculation was used to

remove attributes that had little

informational value Entropy levels ranged

from 0.42 to 2.18; several different entropy

thresholds were tried before 2 was

eventually settled on. Any attribute with an

entropy level below this threshold was

eliminated, leaving just 20 attributes. This

algorithm was accurate only 24.1% of the

time.

Finally, the fourth algorithm, which also

used an entropy calculation, used averages

to score words and users, and calculated

each word’s score as the cosine of the angle

between the user and the word. This

algorithm was accurate 24.3% of the time.

Although none of these algorithms did much

better than random, an interesting pattern

could be observed in recommendations that

they produced, particularly in the

recommendations for children with smaller,

more homogenous vocabularies. A child

who only knew the words “mommy,”

“daddy,” and “baby” (with one of these

words randomly being removed each time)

consistently received other “people” words,

like “aunt” and “grandpa,” as

recommendations. Likewise, a child who

knew only animals received other animals as

recommendations. The recommendations

appeared to be intelligent on some level, just

correct very often.

These algorithms returned to the trends

demonstrated by the “straw man” and k-NN

algorithms, with average accuracy

increasing and variance decreasing as

vocabulary size increased.

MCDI Norms

Finally, two algorithms were implemented

using the American CDI norms data set.

Because this data was gathered from a much

larger group of children than the group used

for these experiments, overfitting was not as

much of a concern.

The first algorithm used the single set of

norms for both male and female children.

Any children younger than 16 months were

assigned the norms for 16-month-olds, and

any children older than 30 months were

assigned the norms for 30-month-olds, while

all the other children were assigned the

norms for their age. Scoring words was

simple: once the norms for the child’s age

were extracted, the percentages were

matched up with the corresponding words

and sorted. The percentages were the words’

scores, and the words with the highest scores

were recommended. This algorithm had an

accuracy rate of 47.7%.

The second algorithm made use of the

separate male and female norms, so that the

norms used for each child were based on

both age and gender. Scoring worked the

same way as for the first algorithm, and this

algorithm was accurate 47.3% of the time.

For these algorithms, average accuracy

increased and variance decreased as

vocabulary size increased.

Discussion and Future Work

Although all of the algorithms described

here did better than random, and many came

close to the success of recommending the

most popular words (even essentially tying

it), none could actually beat the second

“straw man” algorithm. However, many of

the algorithms brought out interesting

patterns in the children’s vocabularies. Some

algorithms and data sets were more suited to

certain vocabularies than others. For

example, using the combined gender

American CDI norms resulted in a higher

accuracy rate than using separate ones for 54

children, while 41 did better with separate

norms and 3 were tied. Although the

difference in accuracy was often negligibly

small, several children displayed statistically

significant differences between the two

algorithms – for one child, the combined

norms were yielded a 52% accuracy rate,

while the separate norms were accurate only

37% of the time. The two algorithms with

the highest overall performance – the one

recommending the highest words (the

second “straw man” algorithm), and the

probabilistic one which added the

probabilities based on attributes outside of

vocabulary – did not always have the

highest performance for every individual

child.

The data sets used for these experiments

contain several pieces of information in

addition to the words in each child’s

vocabulary, and figuring out how to

combine these pieces of information with

the set of vocabulary words is no trivial task.

Many of the algorithms here used relatively

simplistic techniques for utilizing this

additional information (if it was utilized at

all), and future work may involve using

more complex methods to determine the

appropriate weights and the relationships

between these attributes and the words that

the child will learn. It is also likely that there

are factors not included in this data which

influence the development of a child’s

vocabulary, and while some of these may be

possible to gather and organize into easy-to-

use data sets, others may be more difficult to

grasp.

Furthermore, the algorithms used here are

only a small subset of all the techniques that

have been studied and used for

recommender systems. Among those that are

not described here are Bayesian belief

networks, artificial neural networks, and

probabilistic latent semantic analysis

(PLSA), to name just a few popular

approaches. Bayesian belief networks are a

somewhat more complex approach to

dealing with probabilities than the

probabilistic algorithms discussed here.

Artificial neural networks have been known

to perform similarly to Bayesian belief

networks, but are very different in

implementation and do not rely on linear

relationships between probabilities. Finally,

PLSA, which is closely related to LSA [3],

has been known to outperform LSA, but is

has a high complexity and can be difficult to

implement efficiently. While an efficient

Ruby gem was found and used for the LSA

implementation described here, similar tools

for PLSA are difficult to find and may have

to be built from scratch. Each of these

algorithms brings out different aspects of the

data in vastly different ways and would

definitely be worth looking into further in

the future.

References

1. Ricci, Francesco, et al. Recommender

Systems Handbook. Springer, New

York, 2011.

2. Dale, P. S., and Fenson, L. (1996).

Lexical development norms for young

children. Behavioral Research Methods,

Instruments, & Computers, 28, 125-127.

3. Bhaskar Mehta, Thomas Hofmann, and

Wolfgang Nejdl. 2007. Robust

collaborative filtering. InProceedings of

the 2007 ACM conference on

Recommender systems (RecSys '07).

ACM, New York, NY, USA, 49-56.

DOI=10.1145/1297231.1297240

http://doi.acm.org/10.1145/1297231.129

7240

4. Larry Fenson, Philip S. Dale, J. Steven

Reznick, Elizabeth Bates, Donna J. Thal,

Stephen J. Pethick, Michael Tomasello,

Carolyn B. Mervis and Joan Stiles.

Monographs of the Society for Research

in Child Development, Vol. 59, No. 5,

Variability in Early Communicative

Development (1994), pp. 134-139

