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Introduction 

Recommender systems, which use machine 

learning algorithms to solve problems such 

as recommending content or a product to a 

user, are widely used for commercial 

purposes. For example, Netflix uses a user's 

preferences to recommend movies the user 

has not yet seen but might enjoy, and 

Amazon uses past purchases and item 

viewings to recommend items that a user 

might like to buy in the future [1]. 

For these experiments, several of these same 

algorithms and techniques are applied to a 

new problem: predicting the words a young 

child will learn next based on the words that 

child knows now. Experiments on the 

vocabularies of young children often require 

the assistance of a parent or guardian to 

indicate which words the child already 

knows, and being able to recommend new 

words to the parent might make it easier to 

gather this information. In addition, it is 

hoped that algorithms such as these might 

reveal patterns in children's vocabularies and 

increase understanding of the speech 

learning process. As more is learned about 

the ways in which humans acquire speech, it 

becomes easier to identify atypical learning 

patterns, which in turn can help diagnose 

problematic learning patterns. 

Recommender system techniques generally 

deal with matching users to items. For these 

experiments, the users become children and 



the items become words. Recommender 

system algorithms tend to take either a user-

based or item-based approach [1]. A user-

based approach uses the interests (or in this 

case, knowledge) of similar users to 

recommend items to the given user. An 

item-based approach looks at items similar 

to the items already associated with the 

given user and attempts to find similar items 

to recommend. Both of these approaches are 

taken here: the k-NN and American CDI 

norm algorithms described take a user-based 

approach, while the probabilistic, SVD,  and 

noun/attribute algorithms can all be (at least 

loosely) classified as item-based approaches. 

However, the “straw man” algorithms to 

which these algorithms are compared do not 

quite fit into either category. 

Data 

Three data sets were used for these 

experiments: the child/word set, the 

noun/attribute set, and the American CDI 

norms set. 

Child/Word Set 

The child/word set contains cross-sectional 

data on 100 children and their knowledge of 

677 words, in the form of a matrix (with a 1 

indicating that the child knows the word and 

a 0 otherwise). In addition, the child set 

contains information such as each child’s 

gender, age in months, and percentile (how 

the child compares with other children at 

his/her age based on the number of words 

he/she knows). Vocabulary sizes range from 

5 to 661. Ages range from 12 to 32 months. 

This data set was used for all of the methods 

described here, though not all of the 

information was used for each method. The 

list of words included in this data is a subset 

of the Macarthur-Bates Communicative 

Development Inventory (MCDI) word list. 

For these experiments, 677 of these words 

were used. 

Noun/Attribute Set 

The noun data set contains information 

about how well each of the nouns fits into 



each of 97 categories (or where they fall on 

a scale). Each noun has a score from 0 to 10 

(inclusive) for each category (or attribute). 

To obtain these scores, a group of adults was 

asked to score each noun in each category, 

and the average of each of these score sets 

was used as the final score for a given word 

and attribute. The list of nouns is separate 

from the list of words in the child/word set, 

which contains words of many parts of 

speech. There are 327 words that are 

featured in both of these lists, and only these 

words were used for algorithms that utilized 

the noun/attribute set. This data set was only 

used for some of the methods described 

here, and when it was used, all non-nouns 

were excluded from the experiment. If a 

child’s vocabulary contained fewer than two 

nouns, the child was excluded from the 

experiment. 

American CDI Norms Set 

The American Communicative 

Development Inventory (CDI) norms set [2] 

contains information about the percentage of 

children who know each word in the set at 

each age from 16 to 30 months 

(incrementing one month at a time). There is 

one set of these norms for female children, 

another for male children, and one for both 

combined. This data set contains all of the 

words included in the child/word set. It was 

gathered from 1461 children. 

Measuring Accuracy 

To test the accuracy of each of these 

algorithms, one fifth of each child’s 

vocabulary was removed, and the algorithm 

was used to try to recommend it back. Once 

a list of recommended words had been 

compiled, the number of correct 

recommendations was divided by the total 

number of recommendations to get the 

percent correct. Each algorithm was run 100 

times, and the average accuracy rate and 

variance over all of these runs was recorded. 

The exception to this is the SVD algorithm; 

this algorithm was run multiple times, but 



the results of only one iteration were 

recorded. When an algorithm required 

information, such as probabilities, to be 

gathered from the data before 

recommendations were made, this 

information was gathered only from the 80% 

of the child’s vocabulary that was not taken 

out, in order to realistically simulate a real-

world recommendation scenario. 

The constraints of the experiment had some 

effects on the results that must be taken into 

account prior to analysis. Because only a 

few hundred words were used, and some 

children knew nearly all of those words, 

there was little guessing involved in making 

correct recommendations for those children 

with large vocabularies. If very few words 

are not in a child’s vocabulary, then there 

are very few possible wrong 

recommendations, and the algorithm will 

always recommend all or most of the words 

correctly. 

On the other hand, if a child does not know 

many words, there will be very little to base 

predictions on (though this does not matter 

for these “straw man” algorithms), and there 

will be hundreds of possible wrong answers 

and few correct ones. For a child who knows 

only 5 words and has one of those words 

removed for the purpose of recommending it 

back, the algorithm will either predict that 

one word correctly and have 100% 

accuracy, or predict incorrectly and have 0% 

accuracy. The latter case is much more 

probable. Unlike the somewhat 

unrealistically high accuracy found in 

recommendations for children with large 

vocabularies, this trend represents a real-

world recommendation scenario fairly 

accurately. 

“Straw Man” Algorithms 

To identify the lower bounds of success, the 

accuracy and variance of two very simple 

“straw man” algorithms were measured: one 

of these algorithms simply recommended 



random words for each child, and the other 

calculated which words were most 

commonly known to all of the children and 

recommended the most commonly known 

words that each child did not already know. 

The first of these algorithms had an average 

success rate of 21.5%, while the second had 

an average success rate of 52.0%. The 

average accuracy of both algorithms 

increased as vocabularies got larger, while 

the variance decreased. This happened 

somewhat more gradually for the second 

algorithm than for the first. 

While both algorithms produce a higher 

variance in results for children with small 

vocabularies than for children with large 

ones, the second algorithm has a much 

higher variance for small vocabularies 

because the correct words were actually 

guessed more frequently. This is strikingly 

different from the random 

recommendations, which had 0% accuracy 

and 0 variance for the smallest vocabularies 

before the trend of high variance appeared. 

It is realistic to assume that these trends in 

variance would exist in a real-world 

recommendation scenario involving just 

about any number of vocabulary words. 

K-NN 

K-NN approaches are commonly used for 

recommender systems because they are 

inherently related to the recommender task 

of identifying like-minded users [1]. Three 

different k-NN algorithms were 

implemented with the child/word set. 

The first k-NN algorithm simply assigned 

each child a similarity score based on the 

number of words they had in common with 

the given child. Then, each word received a 

score equal to the number of top K most 

similar children who knew it, and the words 

with the highest scores were recommended. 

Several values of K were tried, and the value 

of K that scored highest was selected and 

recorded. This algorithm is equivalent to the 



second “straw man” algorithm, 

recommending the most popular words in 

overall, if K is equal to the total number of 

users, but it can theoretically give different 

results for lower values. However, running 

this algorithm several times revealed that the 

percentage of accuracy was highest for 

values of K very close the number of users, 

and no one particular value of K stood out. 

Furthermore, the percentage of accuracy was 

not statistically significantly different from 

that of the algorithm which recommended 

the most popular words overall. Although 

this algorithm appears to be superior to the 

first “straw man” algorithm, it is at best 

exactly the same as the second.  

The second algorithm was similar to the 

first, but each word received a score that 

was equal to the sum of the scores of the top 

K children who knew it, and the words with 

the highest scores were recommended. This 

gives more weight to words that are known 

by children more similar to the current child, 

and it is not equivalent to the second “straw 

man” algorithm. Several values of K were 

tried for this algorithm as well, and the value 

of K that scored highest was selected and 

recorded. This algorithm had an average 

accuracy rate of 50.5% for the best value of 

K. Interestingly, this algorithm also scored 

highest with values of K that were near or 

equal to the total number of users. Although 

it is not technically equivalent, it performed 

very similarly to the second straw man 

algorithm. 

For the third algorithm, words were scored 

the same way as in the first, but each child’s 

similarity score received a boost based on 

that child’s other attributes. Binary attributes 

like gender, language, number of languages 

spoken, and hardness of hearing were worth 

equal boosts if a child’s value for that 

attribute matched the given child’s value. 

For attributes like age, percentile, and words 

spoken, boost was proportional to the 

difference between the value for the current 



child and the value for the child being 

scored, and the child’s similarity score was 

multiplied by this value. K was selected the 

same way as in the first two algorithms. This 

algorithm had an average accuracy rate of 

51.1% for the best value of K and, like the 

other k-NN algorithms, scored highest for 

very high values of K. 

Patterns in average accuracy and variance 

for these algorithms were largely the same 

as the patterns found in the two “straw man” 

algorithms. 

Probabilistic 

Next, four probabilistic algorithms were 

implemented. This involved calculating the 

probability that a child knows each word 

based on each other word. (For example, the 

probability that a child knows “mommy” if 

that same child knows “daddy” was 

calculated.) These probabilities were 

calculated on a training set. When making 

recommendations, each word’s score was 

calculated in a different way for each 

algorithm. 

 For the first algorithm, the score of each 

word was calculated by using the “inclusive 

or” probability formula to combine the 

probabilities that the child knew that word 

based on each word that the child already 

knew. This algorithm had an accuracy rate 

of only 26.5% - barely better than random, 

and far worse than recommending the most 

common words. 

For second algorithm, the probabilities were 

instead combined as a simple sum. This 

algorithm was accurate 49.1% of the time, a 

huge improvement over the first, but still not 

enough to beat the second “straw man” 

algorithm. 

The third algorithm used the same scoring 

method as the second algorithm, but also 

added the probabilities that the child knew 

the word based on the child’s gender, age, 

percentile, and number of words spoken. It 

then recommended the words with the 



highest scores. This algorithm had an 

accuracy rate of 52.5% percent, about the 

same as the second straw man algorithm 

(technically higher, but not enough to be 

considered a statistically significant 

improvement). 

Finally, the fourth algorithm used a different 

method than the first three for determining 

the relationships between different words. 

The child/word matrix was multiplied its 

own transpose so that each row and column 

of the result represented a word, and each 

cell contained a number related to the 

number of times that the word for that row 

appeared in a child’s vocabulary with the 

word from that column. These numbers 

were then summed to calculate word scores. 

The numbers gathered through this method 

amplify the relationships between words, 

and the algorithm is a lot more efficient than 

the first three. However, it was only accurate 

39.9% of the time. 

Interestingly, although average accuracy 

increased with vocabulary size, much like 

the “straw man” and k-NN algorithms, 

variance also increased with vocabulary 

size. This trend in variance is the exact 

opposite of the trends in variance displayed 

by the previously described algorithms. 

Latent Semantic Analysis 

Latent semantic analysis is a popular 

technique for recommender problems that 

involve processing text. For example, a 

search engine will use this technique to take 

a user’s query and match it with relevant 

documents. The process involves singular 

value decomposition, a matrix 

decomposition method that draws out latent 

“concepts” from the data and gives both the 

query and each of the documents a score 

based on how much it aligns with each 

concept. For purpose of these experiments, 

each word was treated like a query, and a 

child’s vocabulary was treated like a 

document. On this data set, just two latent 



concepts were detected. The distance of 

each word from each child was measured as 

the cosine of the angle between the child 

vector (containing the child’s score for each 

concept, based on his/her vocabulary) and 

the word vector (containing the word’s score 

for each concept). The the idea is that this 

method should be able to pick up on subtle 

patterns in children’s vocabularies, patterns 

which are not easily observable by simply 

looking at the words. However, this 

algorithm was only accurate 30.6% of the 

time. 

The accuracy of these algorithms increased 

with vocabulary size, and so did the 

variance, as with the probabilistic 

algorithms. 

Noun Features 

Four algorithms made use of the 

noun/attribute set, which contained 

information about how well each noun fit 

categories like “is round” and “has face,” or 

fell on scales such as small to large and light 

to heavy. 

The first algorithm involved calculating the 

amount of each attribute that each child had 

in his/her vocabulary based on the sums of 

the attribute scores for each of the words 

that the child knew. The child’s score for 

each attribute was then multiplied by each 

word’s score for that attribute, and these 

values were summed across all the attributes 

to determine each word’s score. This 

algorithm had an accuracy rate of 27.2% 

The second algorithm was similar to the 

first, but the child’s score was an average 

rather than a sum, and the cosine formula 

was used to determine each word’s score. 

These algorithms had an accuracy rate of 

25.1%. 

The third algorithm was like the second one, 

but an entropy calculation was used to 

remove attributes that had little 

informational value Entropy levels ranged 

from 0.42 to 2.18; several different entropy 



thresholds were tried before 2 was 

eventually settled on. Any attribute with an 

entropy level below this threshold was 

eliminated, leaving just 20 attributes. This 

algorithm was accurate only 24.1% of the 

time. 

Finally, the fourth algorithm, which also 

used an entropy calculation, used averages 

to score words and users, and calculated 

each word’s score as the cosine of the angle 

between the user and the word. This 

algorithm was accurate 24.3% of the time. 

Although none of these algorithms did much 

better than random, an interesting pattern 

could be observed in recommendations that 

they produced, particularly in the 

recommendations for children with smaller, 

more homogenous vocabularies. A child 

who only knew the words “mommy,” 

“daddy,” and “baby” (with one of these 

words randomly being removed each time) 

consistently received other “people” words, 

like “aunt” and “grandpa,” as 

recommendations. Likewise, a child who 

knew only animals received other animals as 

recommendations. The recommendations 

appeared to be intelligent on some level, just 

correct very often. 

These algorithms returned to the trends 

demonstrated by the “straw man” and k-NN 

algorithms, with average accuracy 

increasing and variance decreasing as 

vocabulary size increased. 

MCDI Norms 

Finally, two algorithms were implemented 

using the American CDI norms data set. 

Because this data was gathered from a much 

larger group of children than the group used 

for these experiments, overfitting was not as 

much of a concern. 

The first algorithm used the single set of 

norms for both male and female children. 

Any children younger than 16 months were 

assigned the norms for 16-month-olds, and 

any children older than 30 months were 



assigned the norms for 30-month-olds, while 

all the other children were assigned the 

norms for their age. Scoring words was 

simple: once the norms for the child’s age 

were extracted, the percentages were 

matched up with the corresponding words 

and sorted. The percentages were the words’ 

scores, and the words with the highest scores 

were recommended. This algorithm had an 

accuracy rate of 47.7%. 

The second algorithm made use of the 

separate male and female norms, so that the 

norms used for each child were based on 

both age and gender. Scoring worked the 

same way as for the first algorithm, and this 

algorithm was accurate 47.3% of the time. 

For these algorithms, average accuracy 

increased and variance decreased as 

vocabulary size increased. 

Discussion and Future Work 

Although all of the algorithms described 

here did better than random, and many came 

close to the success of recommending the 

most popular words (even essentially tying 

it), none could actually beat the second 

“straw man” algorithm. However, many of 

the algorithms brought out interesting 

patterns in the children’s vocabularies. Some 

algorithms and data sets were more suited to 

certain vocabularies than others. For 

example, using the combined gender 

American CDI norms resulted in a higher 

accuracy rate than using separate ones for 54 

children, while 41 did better with separate 

norms and 3 were tied. Although the 

difference in accuracy was often negligibly 

small, several children displayed statistically 

significant differences between the two 

algorithms – for one child, the combined 

norms were yielded a 52% accuracy rate, 

while the separate norms were accurate only 

37% of the time. The two algorithms with 

the highest overall performance – the one 

recommending the highest words (the 

second “straw man” algorithm), and the 



probabilistic one which added the 

probabilities based on attributes outside of 

vocabulary – did not always have the 

highest performance for every individual 

child. 

The data sets used for these experiments 

contain several pieces of information in 

addition to the words in each child’s 

vocabulary, and figuring out how to 

combine these pieces of information with 

the set of vocabulary words is no trivial task. 

Many of the algorithms here used relatively 

simplistic techniques for utilizing this 

additional information (if it was utilized at 

all), and future work may involve using 

more complex methods to determine the 

appropriate weights and the relationships 

between these attributes and the words that 

the child will learn. It is also likely that there 

are factors not included in this data which 

influence the development of a child’s 

vocabulary, and while some of these may be 

possible to gather and organize into easy-to-

use data sets, others may be more difficult to 

grasp. 

Furthermore, the algorithms used here are 

only a small subset of all the techniques that 

have been studied and used for 

recommender systems. Among those that are 

not described here are Bayesian belief 

networks, artificial neural networks, and 

probabilistic latent semantic analysis 

(PLSA), to name just a few popular 

approaches. Bayesian belief networks are a 

somewhat more complex approach to 

dealing with probabilities than the 

probabilistic algorithms discussed here. 

Artificial neural networks have been known 

to perform similarly to Bayesian belief 

networks, but are very different in 

implementation and do not rely on linear 

relationships between probabilities. Finally, 

PLSA, which is closely related to LSA [3], 

has been known to outperform LSA, but is 

has a high complexity and can be difficult to 

implement efficiently. While an efficient 



Ruby gem was found and used for the LSA 

implementation described here, similar tools 

for PLSA are difficult to find and may have 

to be built from scratch. Each of these 

algorithms brings out different aspects of the 

data in vastly different ways and would 

definitely be worth looking into further in 

the future. 
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