
Teaching Programming with GameMaker Drag-n-Drop and

Arduino Text-Based Code
Troy Hill

Winston Salem State University
601 S MLK JR Drive
Winston Salem, NC

919-725-6727
Thill108@rams.wssu.edu

Dr. Christna Gardner-McCune Phd
University of Florida

Gainesville, FL 32611
864-656-5862

gmccune@ufl.edu

ABSTRACT
This research looks at the possibilities of using a drag-n-drop

programming language, in this instance, GameMaker to help

teach middle school and high school students how to program.

Drag-n-Drop programming is used to teach the basic concepts of

programming like variables, if-statements, algorithms and more.

The fact that they are learning to make a game at the same time

is what engages them to want to learn how to program and what

helps instill the concepts they learn for the long term. Learning

the concepts of programming in general is what allows them to

make an easy transition into text based programming. Arduino is

the tool that we used to introduce the Simple C programming

language. We chose Arduino because it is also an engaging tool

that can be used to teach text-based programming. The Arduino

Esplora is a gamepad controller that we used to work along side

the games that the students made in GameMaker. Working hand

and hand, the drag-n-drop concepts learned in GameMaker

transitioned directly into the text-based programming of

Arduino while keeping the young students engaged and

interested all the while.

Categories and Subject Descriptors

General Terms

1. INTRODUCTION

Programming for a beginner can be an overwhelming

experience. The concepts, syntax, different languages, and

different applications can intimidate those who don’t know

where to start but just want to start. Another important factor

comes into focus when you zero in on teaching the middle and

high school age groups how to program. You not only have to

focus on teaching in a clear and effective manner, but you have

to keep their attention as well. In a college setting you are

expected to pay attention regardless of teaching style and

technique. Try the same straight forward technique with a

younger audience and you quickly lose engagement from many

if not all the students. Drag-n-Drop programming like that

offered by GameMaker, may be the saving grace in a field

where engaging younger students in a text-based programming

language challenges both student and teacher.

2. METHOD
The students were taught in a classroom setting with desks,

laptops, a classroom size white board and projector. Short

lessons made up the majority of the group learning while hands

on, one on one, teaching was our primary tool overall.

Throughout all learning processes, programming concepts were

reinforced heavily to encourage them to remember them long

after the camp had ended. Various surveys were given for us to

get a good understanding of their different levels of experience

as well as the progress and understanding along the way. After

one week of rigorous learning and programming the students

completed and presented their games to the public.

3. CONCLUSION

When the high school students learned about our camp they

had three basic ideas of what they wanted. A) They wanted to

advance their programming skills in general. B) They wanted to

advance or learn Game Maker skills. C) They just wanted to

make their own games. One of the first questions we asked

them was how did they prefer to learn. The majority 27%

preferred using logic, reasoning and systems, 19% preferred

words, speech and writing, and 17% preferred pictures and

images visual understanding. After having a feel for how they

liked to learn we next wanted to know what they already knew.

68% of the students already had exposure to programming

previously with 38% of those students actively doing some form

of coding on a daily basis. Additionally, 63% of the students had

had either previous Game Maker experience or used another

game design software before coming to the camp. This group of

high school students were all motivated to learn more about

computer science, many of them, determined to major in the

field.

When considering how to give instruction, 24% of the students

liked to learn from hands-on activities and 22% liked to read

instructions before starting a project. Our instruction

capitalized on those preferences. Teaching the students would

consist of a half an hour lesson and then we would allow them

to work in the groups. While working in their groups the staff

would walk around and give hands-on help to specific problems

and challenges. When teaching students that range in

programming skill, from none at all to quite a lot, it’s important

to maintain a balance between not leaving the beginner

programmers behind, while still challenging the advanced

programmers. The 30 minute lesson at the beginning was our

way of getting the beginners up to speed on what they would

need to progress, and the hands on help was helpful to

everyone, especially the advanced programmers for helping

them to progress or think computationally about their

challenges. The most challenging aspect of the program was

getting the students to learn and retain this information in one

week. Many of the students went from no previous

programming experience to a fully functional game in 5 days. I

believe having a project that you can take home, show people,

and continue to develop is what makes the difference. Creating

a game is why the students engagingly learn the programming

concepts we teach them, and the desire to improve and create

more is what inspires them to retain and build upon those

concepts.

There were four major things that the students stated they

took away from the camp. A) How to code without any

previous knowledge. B) How to code in Game Maker. C) How to

use Arduino. D) Logic and Computational thinking skills. One

student stated “I have never done any kind of coding prior to

this program, and now I know the basics to coding in a text

based language and am confident in my ability to code using

Game Maker. Additionally, I have had the opportunity to learn

how code is structured and how to make different aspects of a

program work together to complete a task.” In 5 days this

student without any prior programming experience learned

programming concepts in a drag-and-drop based language and

applied to those concepts and as a result was able to get a basic

understanding of the Arduino text based language. Applying

programming concepts from a drag-and-drop platform to a text

based language was the core of my research and is what

reinforced constantly through the camp. The main concepts I

wanted them to learn were variables, if-statements, and simple

algorithms. After the camp we asked students what concepts

they were able to take from Game Maker and apply to Arduino.

One student stated, “I learned several concepts from these: I

learned about variables, data types (from Arduino), algorithms

and sprite animation.” Many of the other students included

those concepts, as well as if-statements and Boolean variables.

Debugging was also a huge factor in learning to program. For

the beginner students it was a wakeup call for the true

challenges of programming, and for the advanced students, an

opportunity to gain a better understanding on the proper way

to debug code. Although challenging, debugging didn’t

discourage any of the students and they were all able to

overcome their debugging challenges. In describing how

debugging has or has not helped with confidence explaining

their code, one student stated, “Debugging definitely helps to

explain the code. In order to debug, you have to isolate: a) the

problem, b) what causes the problem, and c) steps to fix the

problem. And often times I tried 3 or 4 methods to fix it, before

finally making bugs go away. Since so much time and effort has

to be invested in debugging, you learn exactly what your code

is doing, why it does what it does, and why you can’t do it

another way.” Another angle to look at was the difference in

debugging in the drag-and- drop language of Game Maker vs

debugging in the text based Arduino. The major response I

expected was for them to focus more on the conceptual errors

that they would come across in Game Maker, while Arduino

would consist of the syntax errors from having to type out the

code themselves. One student described his experience, “While

debugging in Game Maker, it had to do with trying to

manipulate the actions to change the errors. For instance, we

had an error where we had to make Game Maker recognize we

were trying to create and define a variable, but unlike Arduino,

we didn’t have to go into the hard code itself.” As far as the

difficulty of debugging in Game Maker compared to Arduino,

the students were split nearly even. I found this interesting as I

had expected them to consider Arduino much more of a

challenge to debug due to the text code. However after

learning the concepts in Game Maker and recognizing those

concepts in Arduino, many students reported that debugging in

Arduino only came down to minor syntax errors. “Debugging in

Arduino was extremely easy because it was just syntax errors.

Debugging in Game Maker however was harder because I had

to figure out why my code was wrong and how to fix it.”

We also wanted to know overall which type of programming

language did they enjoy using more between drag-and-drop

and text based programming. I expected the majority of the

students to go with drag-and-drop, due to the fact that it’s

easier to learn and use many students agreed but there were

also some interesting disagreements with my expectation. A

good example of a student stating that drag-and-drop was

more enjoyable is, “I prefer drag-and-drop programming,

because it is easier to use and there is less room to make

mistakes, which makes debugging easier.” While I agree with

that statement I also find the counter argument just as true.

When another student was asked what language they prefer,

there response was, “Text based coding. It is what real

computer science majors use and has more educational value

than drag and drop programming.” This reinforces that fact that

for beginners, a drag-and-drop learning system is advantageous

for its ease of use and understanding. However once those

programming concepts are understood and the programmer

wants to spread their wings a little, text based programming is

a preferable route, especially when education and industry

become factors. Therefore by connecting the two, you supply a

bridge between those who want to learn and those who want

to improve or progress their learning. We directly asked

students to tell us how they utilized different concepts in their

programming to see if they were able to learn the concepts and

apply them. When asked how the students used variables in

their program, one student replied, “To store values, like

whether or not the player has a certain weapon, and how much

health the player has.” The most important part of that

statement is that the student understands that variable’s main

purpose is to store values, accompanied by the fact that they

were able to use this concept to program parts of their games.

When asked how if-statements where used in their games, one

student replied, “I used if-then statements in correlation with

variables, assigning events and actions to varying sets of

parameters.” This is an example of a student combining two

concepts, variables and if-statements, and understand how to

combine those concepts with game programing concepts to

progress their game.

4. REFERENCES
[1] Brock, J Dean, Rebecca F Bruce, and Susan L Reiser. "USING

ARDUINO FOR INTRODUCTORY PROGRAMMING COURSES:

A TUTORIAL*." 129-30. SIGCSE. Web.

[2] C. Y. Cheung, Joey, Grace Ngai, Stephen C. F. Chan, and

Winnie W.Y. Lau. "Filling the Gap in Programming

Instruction: A Text-enhanced Graphical Programming

Environment for Junior High Students." 276-80. SIGCSE.

Web.

[3] Hoganson, Dr. Ken. "TEACHING PROGRAMMING CONCEPTS

WITH GAMEMAKER*." 181-87. SIGCSE. Web.

[4] W.B. Li, Frederick, and Christopher Watson. "Game-Based

Concept Visualization for Learning Programming." 37-42.

SIGCSE. Web.

[5] Werner, Linda, Jill Denner, and Shannon Campe. "Pair

Programming for Middle School Students: Does Friendship

Influence Academic Outcomes?" 421-26. SIGCSE. Web.

[6] Werner, Linda, Shannon Campe, and Jill Denner. "TChildren

Learning Computer Science Concepts via Alice Game-

Programming." 427-32. SIGCSE. Web.

 [7] Zhang, Jinghua, Emanuel Smith, Elvira R. Caldwell, and

Matthew Perkins. "LEARNING AND PRACTICING DECISION

STRUCTURES IN A GAME *." 60-66. ACM. Web.

