
Paper 1 DREU: Distributed Research Experiences for Undergraduates 1

Finding Efficient On-Chip Test Pattern Sets

Adina Shanholtz, and Dr. Jennifer Dworak
Summer Research performed for the CRA-W DREU Program

At Southern Methodist University, Dallas, Texas USA

Abstract
Over the summer I worked on a project to

generate and analyze on-chip test pattern sets that detect
defects and wear out in hardware. These test patterns can
be applied optionally in a multicore chip or in a 3D stack.
To find the most efficient patterns, we investigated the
generation of test patterns by identifying the mandatory
detection conditions for hard faults and then filling the
other inputs with pseudo-random values. The mandatory
conditions are necessary, although not sufficient for the
detection of the corresponding faults. By merging
mandatory conditions, we can create patterns that test for
multiple hard faults.

1. Introduction
Our research team focused on generating test sets

that would be well-matched to the workload of a particular
user in the field. Test patterns may be applied to chips in
the system to detect circuits that have begun to fail due to
wearout, something that happens over time. Our goal was
to find an efficient way to detect not only all of a circuit’s
faults, but especially the most critical and hard to detect
faults for a particular workload. This information can be
used to optimize test sets so that these hard to detect and
critical stuck-at faults can be detected when testing
resources are very limited, as they would be for on-chip
test in the field [Shi 2011].

Hardware monitors are used in many circuits to
gather information regarding how many times an event
happens in a circuit at runtime. However, they have
historically not been used for providing gate level fault
coverage information. I worked on developing methods
that would utilize information provided by a hardware
monitor that is inserted into a circuit design during
manufacturing to analyze how many times a particular
fault is likely to be detected. This type of hardware
monitor captures partially-defined states of the machine
and counts how many times each partial state was seen
while executing specific instructions. The information
provided allows us to focus on-chip testing resources on
faults that are most important for the way a chip is actually
being used [Shi 2011]. The focus of my project this
summer involved developing new ways to automatically
generate those test sets on-chip using the processing
capabilities of an on-chip core.

2. Generating Test Sets to Be Applied
On-Chip, Utilizing Information from
Partial State Monitoring

2.1 The process
Our test patterns were generating by using

templates that corresponded to a subset of the mandatory
conditions required for the detection of several faults.
Specifically, each template corresponded to a set of input
assignments, where some inputs were assigned
deterministic values while other inputs were left as “don’t
cares.” The deterministic assignments were created by
merging several hard faults’ mandatory conditions. Hard
faults were defined as those faults that were detected “n”
times in an “n” detect test set (our data used n=15). To
create the final pattern set, each template was replicated
multiple times, and the “don’t care” values were filled
with pseudo-random values. The hope was that the
resulting test set would do a good job of detecting all
faults, especially those considered most critical for a given
workload.

In order to test these pseudo-randomized strings, we
needed to find a way to run them through Fastscan, the
commercial software we were using for fault simulation. I
wrote a script to automate the following process steps:

• filling the don’t care values in each
template with pseudo-random values,

• writing a test bench in Verilog to run
through Modelsim, a Verilog simulator, in
order to get the good circuit output values
for each of the test patterns created from
the templates,

• concatenating the input and output into
readable files for Fastscan,

• running Fastscan and compiling the
results into a fault dictionary.

This process took about four weeks to fully code and
debug.

We ended up with a lot of data from about three
different files so I wrote a program to compile it into a
readable format. We now had information on how many
times a specific fault was detected and how many faults a

Paper 1 DREU: Distributed Research Experiences for Undergraduates 2

pattern detected. With this information I could generate an
updated probability table with more accurate results and
find out how many patterns to generate in order to detect
the hard fault with the smallest probability of random
detection.

2.2 Problems with the Process
A good amount of the problems we ran into were

with the commercial software we used.

After we got the automation working with real data,
we had to double check to make sure we did not make any
errors in the process. I found a discrepancy when checking
to make sure the total number of faults was the same in our
various documents. We spent an unfortunate amount of
time retracing the automated process trying to find the
problem, only to find that my original program that
generated randomized test patterns was not randomizing
the amount of times specified at input, but printing out
only one randomized string that amount of times. Fixing
that problem only gave us more accurate Fastscan results
and the discrepancy remained.

Only after painstakingly going through the data did
we find that Fastscan was not consistent with the data it
gave us, and the program we had that compiled a fault
dictionary did not handle Fastscan's inconsistencies. Once
we fixed this problem with the fault dictionary we ran into
a couple of problems with Modelsim. These problems
were fixed with a simple solution, however they took a
while to troubleshoot, as no one had a good background in
the program.

When we finally got a good generation of data, we
found another strange discrepancy in the file Fastscan gave
us. According to Fastscan's output file, it detected certain
faults multiple times with different patterns, which would
mean that it was not "dropping faults" from the list of
faults. If that were the case, it would mean that every
pattern would (at minimum) have to detect at least one
fault on each circuit output. However, the file Fastscan
gave us had patterns that detected zero faults, which
cannot happen. This last error was not solved while I was
still working on the project.

3. Results
Once I was able to get data from my programs, I ran

randomized test sets in groups of 10, 50, 100, 1000, and
5000. Only when we randomized the 8 partial states 5000
times did we get complete coverage of the circuit we were
testing. Obviously these results are terrible, as one cannot
load 40,000 individual patterns on to a chip for that one
specific circuit. I was able to see from the results that after
the initial detection of the easy faults, only one pattern out
of every couple hundred would be effective, and end up
detecting up to 50 hard faults. I concluded that we needed
either more specialized pattern templates or perhaps to
even hardcode certain patterns to detect the hardest faults.

4. Extra Work
In addition to the automated process for gathering

data, I also spent some time rewriting the process for
generating partial states. It was previously written in
matlab, however not many people can read matlab so I
rewrote the process for generating mandatory conditions
and merging those conditions into partial states in C.

5. Conclusions
In this paper, we have taken the next step in

gathering data using the method of partial state
monitoring. Going even further, we could analyze the
updated probability tables to find the hardest to detect
group of faults, and choose which need to be hardcoded
and which could be detected randomly. Eventually this
process could be tested in the hardware itself and be able
to focus on which faults appear after actual chip wear (as
apposed to simulation).

6. References
[Shi 1] Y. Shi, K. Kaewtip, W.-C. Hu, and J. Dworak,

“Partial State Monitoring for Fault Detection
Estimation,” 2011 IEEE

