
A Benchmark Suite for Motion Planning Algorthims

Latrelle Samuels Daniel Tomkins Nancy M. Amato

Abstract— The motion planning problem, is given the start
and goal configurations of a robot in an environment, to find a
valid path from the start to the goal. The motion planning
problem can be solved by many different algorithms. The
Parasol Laboratory Motion Planning Benchmark Suite includes
narow passage, dis-assembly, surface, and folding problems.
During the course of the summer, I improved and organized
the benchmark suite in the Parasol Laboratory at Texas A&M
University in College Station, Texas. I also used the benchmarks
to evaulate several motion planning algorithms, comparing
the overall time, collision detection calls, and shortest path
generated in a given environment.

I. INTRODUCTION

A benchmark is standard hard problem used to compare
different solving techniques. By techniques, I mean motion
planning algorithms, which will be discussed later in the
paper. Benchmarks allow for comparison of several motion
planning algorithms throughtout the laboratory. Research is
an ongoing process in which we generally want to find news
way of making things work better and faster. Implementing
a new algroithm would generally be tested on a benchmark
to determine it’s efficiency. First, an older algorithm will
be applied to a benchmark. Then, a new algorthim will be
applied to compare the results of the two. The outcome
should be that the newer algrothim would sove the problem
faster and takes up less memory space. This is an example
of how benchmarks are used.

II. RELATED WORK

In this section, we review relevant information to bench-
marks discussed in this paper. We first highlight some work
in motion planning, and then review some work on configura-
tion space, probabilistic roadmaps, rapidly exploring random
trees, and the Parasol Motion Planning Library (PMPL).

A. Motion Planning

Motion planning is a term used for the process of detailing
a function into deteached motions. For example, consider
the navigation of a mobile robot inside a building on a
search-and-rescue mission. The robot is to leave it’s start
configuration and move through the buiding avoiding walls
to get to a goal configuration or waypoint. A motion planning
algorithm would take in information of the robot and the
walls to return a valid path without collisions. Motion
planning is applied throughout several application such as
robotic sugery, video games, robot navigation, automation,
and protein folding. Even on a day-to-day basis, we, as
humans use motion planning when commuting to and from
the workplace. It is essential for benchmarks, because it is
the way how the problems need to be solved.

Fig. 1.

Fig. 2. Roadmaps that are discared are noted as red dotted-lines.

B. Configuration Space

A configuration describes the position of a robot and
configuration space (C-Space) is the set of all possible
configurations. One thing to remember in C-space is Degrees
of Freedom (Dof). The Degrees of Freedom are the number
of parameters that define it;s configuration. To solve a
motion planning problem, algorithms must conduct a search
in the C-space. The C-space provides an abstraction that
converts the robot to a point. Each point in the C-space
represents a different congfiguration of the robot. The set
of configurations that avoids collisions with an obstacle is
called free space and the set of configurations that make up
the obstacle is called obstacle space.

C. Probabilistic Roadmaps

The probabilistic roadmap (PRM) planner is an algorithm
that solves a motion planning problem given a start and
goal configuration[?]. A PRM consists of two phases: a
construction phase and a query phase. In the construction
phase, given an environment, random nodes are generated
(figures 1 & 2). Nodes that are generated on the obstacle
are discared . Once the nodes are generated, a roadmap is
created to connect the nearest nodes. Any roadmap that is
connected through an obstacle is discared (figure 3). Finally,
in the query phase, the start and goal configuration is added
and a valid collision-free path is created (figure 4).

PRM’s are general good for solving multi-query problems.
Generally a query is a single path with a start and finish
configuration and they are connected after some iterations.

1



Fig. 3. Nodes that are discared are denoted as red circles.

Fig. 4. Nodes that are discared are denoted as red circles.

D. Rapidly Exploring Random Trees

A Rapidly-exploring Random Tree (RRT) is a data struc-
ture algorithm that is desgined for efficiency search non-
convex high-dimensional spaces [?]. RRT’s are constructed
incrementally in a way that quickly reduces the expected
distance of a randomly chosen point to the tree. The direct
advantage of this algorithm is that it can be applied to
nonholonomic and kinodynamic planning.

Path planning is generaly viewed as a search in a met-
ric space, X, for a continous path from and initial state,
xinit(labeled ”Start” on figure 5) to a goal xgoal. What
happens, is a node is randomly generated named xrandom
(figure 6). The next step is that a new node, xnew is
generated. Notice that the node is created in the direction
of the emphxrandom but not on the obstacle. Once xnew is
plotted, another new node is created xnear which is near
the node recently plotted. This process keeps going until
eventually we have reached the goal (figure 8).

III. METHODS

A. Organization & Upgrading

First, we organized the benchmarks according to the type
of problems. Some benchmarks narrow passages while some
were more global problems like get a robot to travel through

Fig. 5.

Fig. 6. Xrandom is generated

Fig. 7. xnear is created from xnew

several obstacles to reach a path. The benchamrks are or-
ganized into four categories: narrow passage, disassembly,
folding, and surface. Narrow passage problems are hard
because of the small areas between two or more obstacles.
The benchmarks were then upgraded to current standards of
the laboratory motion planning library.

B. PMPL, STAPL, & VIZMO++

We implemented a x & y method in a C++ motion
planning library, developed in the Parasol Laboratory at
Texas A&M University, which was a distrubuted graph
library(STAPL)[?]. The Standard Template Adaptive Parallel
Library) is a framework for developing parallel programs in
C++. It is desgined to work on both shared and distributed
memory parallel computers. To actaully view a simulation of
how the algorithms solve the benchmarks we used a visual
tool developed by the Parasol Laborary called, VIZMO++.
VIZMO++ is a 3D visualization/authoring tool for files
provided/generated by OBPRM motion planning libray [?].

IV. EXPERIMENTS

A. PRM & OBPRM

To test the PRM and Obstacle-Based(OBPRM) algorthim,
we used the s-tunnel benchmark(figure 9). The s-tunnel
benchmark is simply a obstacle with a(n) s-shaped tunnel
through it for a robot to travel through onto the other side.
PRM’s are commonly solving these type of problem where

Fig. 8. After some iterations, the start and goal states are connected

2



Fig. 9. S-Tunnel Benchmark

Fig. 10. S-Tunnel Benchmark after results from running PRM & OBPRM

there isn’t neccesary a narrow passage for the robot to travel
through. The s-shaped tunnel has enough space for the robot
to travel through onto the other side to reach the goal. A
total amouth of thirty test were run on each algrothim. The
total time for all the test to finish were about thirty to forty
minutes. In the results (figure 9), after running PRM &
OBPRM, we obsrved that OBPRM generally worked very
well compared to PRM. Some good metrics to compares
these results are time and node generation. The OBPRM
algorthim is great for the problem because it takes less time
to solve the problem and less nodes. The more nodes that
are generated, the more money that it cost and also more
memory space is taken up on the computer.

B. RRT & OBRRT

We choose the flange problem as our testing benchmark
for narrow passage problems. The overall goal of the flange
problem is to get the pipe to manuever itself through the
hole and eventually be free from the obstacle. RRT would

Fig. 11. Flange Benchmark

Fig. 12. Variations of Flange Benchmarks after results from running PRM
& OBPRM

be good for solving this problem because of the narrow
passage between the pipe robot and hole in the obstacle. A
total amouth of thirty test were run on each algrothim. The
total time for all the test to finish were about ten to fifteen
minutes..

For the test of the flange benchmark (figure 11) we chose
two variants of the problem. The difference between the two
are the dimesions of the diameter at the end of the pipe.
The higher the number, the bigger the end of the pipe is,
thus creating less space for the pipe to manuever (narrow
passage). The results from the experiments shows us that
RRT work better for this benchmark. OBRRT is a form of
RRT in which the increaments are created near the obstacle.
The OBRRT algorithm creates more nodes then the RRT
which is very costly and could take up more memory space
than expected.

V. CONCLUSION

Motion planning is done everyday by humans without a
single given thought. We are accustomed to simple things
such as walking everyday once we learn it at an early age
of life. While it may be easy to us, it is not the same for
implementing these methods on robots. Configuration space
will help us simplify the problem, by treating the robot as
an abstraction; generally speaking, a point. We take that
knowledge and figure out which motion planning algorithm

3



is best suited for solving the problem. PRM maybe good for
multi-query problems while RRT”s are good for single query
problems.

In conclusion, a benchmark is a standard hard problem
used to compare different solving techniques. We use these
benchmarks to compare between different motion planning
algorithms in the Parasol Laboratory. These are very usual to
us because they give us a since on making motion planning
algorithms better to solve harder problems. Although there
were not described in this paper, there are many other
benchmark that are harder. Those benchmarks are included
in the benchmarks suite that can be visited on the Parasol
Laborartory webpage.

VI. ACKNOWLEDGEMENT

I would like to thank my faculty mentor, Dr. Nancy Amato,
first, for the oppurtunity to come to Texas A&M University
and participate in my first REU ever. I really enjoyed the lab
atmosphere and learning about programming with C++ and
using PMPL . Next, I would like to thank Daniel Tomkins,
my graduate student mentor, for sticking with me for these
long ten weeks and guiding me through the research. I also
want to thank Jory Denny and the other graduate student in
the Parasol Laboratory for answering many of the questions
I had about PMPL and Computer Science.

4


