
Multi-Agent Group Behaviors using
Roadmap-Based Techniques

Daniel Latypov, Andres Medina, Karen Poblete, Colton Revia,
Sam Rodriguez, Andrew Giese, Jory Denny, Nancy Amato

Department of Computer Science, Texas A&M University, College Station, Texas 77840, USA
daniel.latypov@gmail.com, nrxus@tamu.edu, kpoblete@cse.tamu.edu, crevia1@gmail.com

smallsor8786@neo.tamu.edu, agiese@cse.tamu.edu, jdenny@cse.tamu.edu, amato@cse.tamu.edu

Abstract—In robotics, multiple robots frequently collaborate
together in order to accomplish a common goal that might
normally be too difficult or time-consuming for individual agents.
In this paper, we present a novel framework for modeling group
behaviors using a set of abstract components. On the highest level
a simulator coordinates the behaviors and the transition between
states. The behaviors in turn specify a goal and movement for
each agent. We utilize roadmap-based planners to provide a
path for each agent through the environment. This path may
span over simple planar or multilevel environments such as an
office building. The local controller applies the correct controls
to the agent to approximately follow this path while avoiding
obstacles and other agents. We then take these modified controls
and apply motion models, an abstraction of agent motion to
move the agent’s state. The agents have knowledge of their
state through sensors which publish data to information sources.
We demonstrate three common behaviors in this framework:
reciprocal velocity obstacles, frontier search, and large scale
evacuation in simple and multilevel environments.

I. INTRODUCTION

Multi-agent systems are commonly found in nature and are
the subjects of ongoing research [6], both in trying to simulate
them (graphics) or trying to mimic them (robotics). Imagine a
search and rescue situation. Instead of sending just one agent
(whether a human or a robot) to search through a large area,
sending multiple agents will make the search for survivors as
fast as possible if properly coordinated, making them highly
important in scenarios where time is critical. The question
remains, however, of how to optimally search an environment
with a given number of agents. To help study this and a
myriad of other problems, we present a scalable framework
for modeling such multi-agent systems both virtually and
physically.

In robotics, multiple agents frequently collaborate as in the
example above to accomplish a common goal which might
normally be too difficult or time-consuming for any one agent.

In graphics, it is common to try to simulate the behavior
of real-world group such as a flock of birds,a herd of sheep,
or a group of evacuees. The method for simulation needs to
be efficient and scalable so that it is able to handle large
amount of agents being simulated at once (e.g., 500 birds
flying). These models provide information which can be used
in applications ranging from games and computer graphics
to traffic simulation and building design or even training for
emergency personnel.

The goal of our work is to provide a scalable framework
using an agent-centric approach and roadmap-based methods
in order to replicate authentic real-world scenarios of arbitrary
complexity such as multi-level environments. Our framework
will be used to model different kind of behaviors including
flocking [2], searching [11], caravanning [3], and evacuation
[8].

II. RELATED WORK

Just as the motivation for this framework comes from
robotics and graphics, we apply two important concepts
from these fields in our research. From robotics, we borrow
roadmap-based motion planning techniques which enable
robots to find their way through an environment. From
graphics, we borrow the concept of flocking which is a
scalable technique that enables us to efficiently handle large
number of agents.

1) Roadmap-Based Path Planning with PRMs [5]: The
motion planning problem is to find a feasible path that takes an
agent from a start state to a goal state. As mentioned before,
our approach utilizes probabilistic roadmaps to provide the
overall path which the agents have to try to follow while
avoiding collision with their own local controllers.

Briefly, PRMs work by randomly sampling points from the
robots configuration space (C-space) [7], and retaining those
that satisfy certain feasibility requirements (e.g., they must
correspond to collision-free configurations of the movable
object). Then, these points are connected to form a weighted
graph, or roadmap, using some simple local planning method
to connect nearby points, if possible. During query processing,
the start and goal are connected to the roadmap and a path
connecting them is extracted from the roadmap using standard
graph search techniques.

Our framework is configurable to use different motion
planners, such Medial-Axis PRM [10], Obstacle PRM [1], etc.

2) Flocking: Flocking behaviors are common in nature and
there are ongoing research efforts to simulate such behaviors
in computer animation and robotics applications. Generally,
such work only considers behaviors that can be determined
independently by each flock member solely by observing
its local environment, e.g., the speed an agent has, without



any form of communication. Since flock members are not
assumed to have global information about the environment,
only very simple navigation and planning techniques have
been considered for such flocks [2].

III. FRAMEWORK

In order to model several classes of behaviors efficiently
and generally, we present a new framework of eight abstract
components. These abstractions allow us to easily handle a
variety of behaviors acting on both physical and virtual agents.
Our framework makes use of a simulator that controls the
update of each behavior. Behaviors are whatever you wish to
simulate, whether it is searching, swapping places with other
agents, moving in circles, exiting, etc. Each behavior owns
a set of agents, giving the behavior control over the agents’
motion and knowledge. The remaining components of our
framework can be divided into two parts: motion components
and information components. The motion components let the
agent know how to move, while the information components
help the behavior decide the next goal for the agent. Following
is a more detailed description of each component in our
framework.

• Simulator: Coordinates the transition between timesteps
by calling the behaviors to update and resolves collisions.

• Behavior: Defines how the robots acts and what it wants
to do by specifying a goal state and reweighting the
roadmap’s edges as necessary.

• Global Planner: Uses a roadmap to compute a path for
the agent to get to the goal specified by its behavior.

• Local Controller: Chooses how the robot gets from the
place to place as specified by the Global Planner while
avoiding obstacle and interagent collisions.

• Motion Model: Describes mathematically how the robot
moves in response to the controls applied by the Local
Controller. This abstraction allows us to work with both
holonomic and nonholonomic agents or other agents with
limited controls (e.g. Dubin’s cars) in a general way.

• Agent: The individual robot or actor in the simulation. It
is composed of a state and knowledge. It uses its sensors
to gain knowledge of the environment.

• Sensor: Anything that can collect and publish informa-
tion to one or more Information Sources

• Information Source: A piece of named data about
an Agent that can be requested and used by other
components in the simulation, e.g. the agent’s nearest
neighbors, visible nodes in the roadmap, etc. This is also
known as the knowledge of the agent.

To demonstrate our framework, we show an example of
Shakey’s Sense Plan Act model in Figure 1. In our framework,
the simulator resolves collisions and coordinates the transition
between timesteps by calling the behaviors to update their
agents. The behavior provides the agent a goal to reach in
the planning stage, and the global planner, a tool the behavior
uses, provides a path to the goal. The local controller modifies

the agents trajectory slightly to try to avoid collisions with
other agents and obstacles while staying as true as possible to
the path. This modified trajectory is then given to the agent’s
motion model, which describes the motion (physics) of the
agent. For example, it allows our framework to work equally
well with holonomic and nonholomic robots such as cars. The
global planner, local controller, and motion model interact to
constitute the ”Act” stage of the loop. After updating the
state, the ”Sense” stage begins with the sensors collecting
information about the new state and publishing them to the
information sources. The information sources are accessible by
any other component and store the knowledge of each agent.
The behavior then uses this information from the sensing stage
to reassess the situation and provides the agent with a new
goal. This completes the sense-plan-act loop and is re-started
whenever the simulator calls for an update of the behavior.

IV. EXAMPLE BEHAVIORS

Our framework is able to support multiple classes of behav-
iors. In this section we are present three major behaviors that
represent the capabilities of our framework.

A. Frontier Exploration

Fig. 2. A group of agents exploring an environment. The dark areas represent
the unexplored regions.

The goal of any exploration behavior is to explore a given
environment in a way that is efficient and fast. Frontier
exploration makes use of an implicit way of communication by
“marking” nodes as uncleared, cleared or frontier. Uncleared
nodes are the nodes in the roadmap that have not been seen
by any agent. Cleared nodes are the nodes that the agent
has seen with its vision sensor. Frontier nodes are those in
between cleared and uncleared nodes. In our implementation
we define frontier nodes as the uncleared successor nodes to
the cleared nodes.

The map starts with all the nodes uncleared. Each agent will
independently call for an update of its sensor and will mark
and clear the nodes that it can see and set nodes as frontier
and add them to the list. The list of frontier nodes is owned



Fig. 1. Here is a simple example of the standard sense-plan-act loop in our framework.

by the behavior and therefore is “shared” information for all
the agents. The agent will then choose to go to its closest
frontier node. Once the frontier node has been cleared, the
agent will pick a different cleared node. This process will be
repeated until all nodes have been cleared. Figure 1 shows a
partially explored map. The bright areas represent the cleared
portions and the frontier is the border between the uncleared
and cleared sections.

B. Large scale Evacuation

Fig. 3. Agents evacuate from a multi-level environment.

The goal of evacuation behavior is to simulate how some n
number of agents arrive to a safe area from a set of m safe
areas using known exits. In our implementation, the safe areas
as well as the exits are information sources which are shared
for all the agents. The agent also has information on which
safe area it is trying to go to (once it has chosen a safe route)
and whether it has reached it or not. Once an agent reaches
a safe area it finds a random point within that same safe area
to go to so as to not be an obstacle to other agents going to

the same point. In our current implementation we assume that
the exits are neccesary to reach a safe area. In the future, we
would like to improve this method by having the agent figure
out if an exit is neccessary to reach the safe area or not.

C. Reciprocal Velocity Obstacles

Fig. 4. An example of four agents exchanging anitpodal positions. Notice
the symmetry inherent in the algorithm manifests itself in the paths, leading
to fairness.

Reciprocal velocity obstacles are an extension of the original
work of Fiorni and Shiller on velocity obstacles by van der
Burg, et al. The approach views the problem of local collision
avoidance between heterogeneous agents as a constrained
optimization problem. The algorithm must select the velocity
closest to a desired velocity that will not result in a collision
between the agent within some input time horizon. Geometri-
cally, this is understood as applying linear programming on the
polytope defined by the set of velocities resulting in collision
between the agent an its neighbor (a velocity obstacle) to
choose the next velocity [4]. The agents can expect the others



to reciprocate their behavior and average the selected velocity
and its current, optimal velocity [9].

V. DISCUSSION

While implementing the behaviors previously discussed we
found acertain similarities between all of them. Most behaviors
need information, whether it is what can the agent now see,
what areas are safe for the agent to go, what agents are nearby
and at what velocity, etc. This fits well within our framework
due to the abstraction of Information Sources which can be
publicly known throughout all agents or private to each agent.
The behavior then sets what the goal is to “accomplish” the
desired behavior. The behavior doesn’t need to know how to
get to that goal. This separation between goal and path allows
for the abstraction of a separate global planner that is distinct
from the behavior. In the future we would like to explore more
complex behaviors to see if the design our sense-plan-act loop
fits well with a broader range of behaviors.

VI. CONCLUSION

We present a scalable roadmap-based framework for mod-
eling group behaviors. We have implemented different classes
of behaviors in our framework to test its efficacy in adding
new behaviors. In the future we plan to model more complex
and interesting behaviors to further challenge our framework.
We also plan to do a study to compare it against the previous
framework used in our lab.

REFERENCES

[1] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher
Jones, and Daniel Vallejo. Obprm: an obstacle-based prm for 3d
workspaces. In Proceedings of the third workshop on the algorithmic
foundations of robotics on Robotics : the algorithmic perspective: the
algorithmic perspective, WAFR ’98, pages 155–168, Natick, MA, USA,
1998. A. K. Peters, Ltd.

[2] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Roadmap-based flocking
for complex environments. pages 104–113, Oct 2002.

[3] Jory Denny, Andrew Giese, Aditya Mahadevan, Arnaud Marfaing,
Rachel Glockenmeier, Colton Revia, Samuel Rodriguez, and Nancy M.
Amato. Multi-robot caravanning. November 2013. To appear.

[4] Paolo Fiorini and Zvi Shillert. Motion planning in dynamic environments
using velocity obstacles. International Journal of Robotics Research,
17:760–772, 1998.

[5] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–
580, 1996.

[6] Jyh-Ming Lien, Samuel Rodriguez, Xinyu Tang, John Maffei, and
Arnaud Masciotra. Composable group behaviors. Technical Report
TR05-006, 2005.

[7] T. Lozano-Pérez. Spatial planning: A configuration space approach.
Computers, IEEE Transactions on, C-32(2):108–120, 1983.

[8] Samuel Rodriguez and Nancy M. Amato. Behavior-based evacuation
planning. pages 350–355, 2010.

[9] J. van den Berg, Ming Lin, and D. Manocha. Reciprocal velocity obsta-
cles for real-time multi-agent navigation. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pages 1928–1935,
2008.

[10] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space.
volume 2, pages 1024–1031, 1999.

[11] Brian Yamauchi. Frontier-based exploration using multiple robots. In
International Conference on Autonomous Agents (Agents ’98), pages
47–53, 1998.


