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Abstract 

 
We are developing a system that automatically generates transformations from an input space to 
an output space. This system can be used to design digital instruments—a process that requires a 
transformation between physical gestures (a user playing an instrument) and sound synthesis (the 
sounds that instrument makes). Once generated, the transformations (typically called “mappings” 
in the research literature) can be run in real time, allowing users to play instruments. We aim to 
support designers who do not yet have a complete understanding of the input and output spaces 
and want a tool to that helps them explore possible relationships between the spaces. Studies of 
the Wekinator, another tool for creating real-time mappings, motivate us to design new methods 
for generating mappings given less initial information.  We implemented a graphical user 
interface allowing users to generate mappings using our new methods. Following design 
principles for supporting creative thinking, suggested by Resnick et al., this interface encourages 
users to explore multiple mappings by supporting side-by-side mapping creation and evaluation. 
Future work will implement the stash and history tree, tools that encourage designers to explore 
alternate mappings and alternate input and output spaces without risking loss of current work. 
Further studies will also provide user evaluations of our system. 
 

Introduction 
 
Digital instrument designers must decide what it means to play an instrument: what gestures 
should control sound, and to what extent will variations from these gestures result in different 
sounds? This is essentially a mapping problem between input features (often extracted from 
sensors tracking physical gestures) and output parameters (that will drive sound synthesis or 
audio playback). Sometimes, digital instruments attempt to look and feel like existing acoustic 
instruments, in which case the designer has a preconceived notion about how the input gestures 
should be mapped to output parameters. Other times, the designer is creating a completely new 
instrument, and may not have strong ideas about what input gestures to use or how they should 
affect output parameters. These designers may want to explore many different potential 
mappings. Our focus is on the latter group of designers. 
 
First, we give an overview of the Wekinator, a creative support tool with a similar target user as 
us, and we make observations about the Wekinator that motivate our work. Then, we give our 
system overview, explaining the new metaphors we designed that help the user understand our 
system in a way that encourages the user to explore different mappings side by side. Finally, we 
describe our graphical user interface that allows users to automatically generate edit, and compare 
mappings side by side. 
 

Related Work 
 
Our work is inspired by the Wekinator [Fiebrink, 2011], a creative support tool targeted at digital 
instrument designers. The Wekinator supports the creation of mappings through interactive 
supervised learning. 



 
Users map input gestures to output parameters by providing labeled training data. Users can enter 
new training data by manually choosing output labels and then demonstrating input gestures 
using their input devices. Alternatively, users can provide a playback score that details how 
output labels change over time, and then play their instrument along with the score to generate 
labeled training data. After providing training data and training the learning system (a set of 
models, each model driving a different output parameter), the user can evaluate the system 
through real-time control of sound. 
 
Workflow in the Wekinator is shown in the figure below. Notice that refining the learning system 
is an iterative process; users configure and train the learning system, evaluate the learning system, 
and then reconfigure the learning system based on feedback from the evaluation. While the 
Wekinator’s incorporation of interactive supervised learning into their workflow is quite novel, 
this iterative design process—evaluating a system and making changes to that system—is 
common among creative domains [Resnick et al., 2005]. 

 
Figure 1 (taken from [Fiebrink, 2011]): Workflow in the Wekinator 

 
The Wekinator workflow encourages the development of a single train of thought; allowing for 
easy navigation between modes for providing training examples and evaluation supports the 
iterative design process. 
 
However, the Wekinator workflow does not address two important problems in creative support 
tools: (1) A designer may not have a good idea of how input should map to output and (2) A 
designer may have many competing ideas about how input should map to output, and might want 
to explore these ideas side by side. 
 
Requiring the user to provide output labels for each feature vector should be seen as an 
unnecessary restriction on the design process. It forces the user to begin the design process by 



imagining an alleged relationship between the input feature space and the output feature space. 
For designers creating completely new instruments, this relationship might not be clear. 
 
The Wekinator supports developing multiple mappings by allowing users to load and save 
instruments to files. This limited support prohibits users from editing multiple mappings or 
evaluating multiple mappings in quick succession. Users are unlikely to explore multiple 
mappings since no part of the interface suggests that they should explore multiple mappings. 
Additionally, in Wekinator, if you change the input feature setup, you have to create a completely 
new training data set. The extra effort necessary to recreate the data set discourages users from 
exploring different input feature setups. 
 
To address these problems, we explore alternative algorithms for generating mappings given less 
initial information. Our graphical user interface supports side-by-side creation, modification, and 
evaluation of these mappings. 
 

System Overview 
 
Our system can generate mappings given different amounts of information from the user. This 
allows users to both rapidly develop exploratory mappings and carefully develop performance-
ready mappings. To make our system as extensible as possible, we developed data structures that 
generalize mapping generation. 
 
In our graphical user interface, we use “instrument” to refer to our mapping, as a term more 
identifiable to musicians. In order to compute output parameters, we assign each output parameter 
a “tunnel.” A tunnel is a data structure comprised of five other data structures: A feature mapper, 
preprocessors, a function, a function family, and a postprocessor. A feature mapper represents the 
subset of the input features that should affect computation for the current tunnel. The 
preprocessors are a set of functions that do any necessary initial processing on the input features 
(examples might be smoothing functions or type conversions). The function is the main 
computational unit that computes an output based on the inputs. The function comes from a 
family of related functions, all of which can do computations on the same type of inputs and 
output. The function family might correspond to a machine learning algorithm and require 
training data in order to “instantiate” a function (a function might correspond to a machine 
learning model), or the function family might not need training data in order to instantiate a 
function.  The postprocessor does any necessary processing on the output to produce the final 
output parameter.  
 
To “run” an instrument in real time, the system receives Open Sound Control (OSC) packets with 
addresses that correspond to each input feature and arguments that correspond to input values. 
The input values get “tunneled” through each tunnel: filtered by the feature mapper, processed by 
preprocessors, seen as inputs to the function which produces an output, and finally processed by 
the postprocessor to achieve the final output parameter. Once the output parameters are 
computed, they are sent as OSC packets to the computer and address space specified by the user. 
 



 
Figure 2: Flow of computation through a tunnel 

 
Methods For Generating Mappings 

 
When generating mappings, the system, rather than the user, is responsible for choosing feature 
mappers and function families for each tunnel. The system’s choices require some randomness in 
order to ensure that different mappings can be generated and explored without changing the 
input/output setup or other initial conditions. The user can later go back and edit each tunnel’s 
feature mapper, preprocessors, function family, function, or postprocessor.   
 
In order to generate mappings, we pay attention to metadata entered by the user about inputs and 
outputs. Each input/output is considered to be continuous, discrete, or binary. All of these choices 
contain implications about what kind of functions can be used to compute output. The user can 
also choose whether to provide labeled, unlabeled, or no examples. This further reduces the 
amount of possible functions that can produce each output label. Our original heuristic for 
choosing functions will first find the subset of all possible functions in the system that can 
produce output based on these restrictions, and then chooses randomly between these functions. 
There is room for further research about (1) which functions will be most useful to users and (2) 
what smarter methods can we use to make choices about these functions. 
 

GUI Support for Side-By-Side Creation of Mappings 
 

1. The Workspace Setup 
 
Our interface is set up as a workspace that contains multiple instruments. At any time, users can 
switch between instruments via a combo box on the left side of the window, allowing instruments 
to be created side by side. 
  
 
 
 
 
 
 



2. Generate Instrument 
 
To generate an instrument, the computer chooses each tunnel’s feature mapper and function 
family. The user prompts the computer to choose function families that require labeled examples, 
unlabeled examples, or no examples. If “no examples” was selected, a function can be 
instantiated from the function family automatically, and the user can run the instrument 
immediately. Otherwise, users must provide training data and instantiate functions before they 
can run the instrument. 
 
Figure 3: The tool on the Generate Instrument screen. A digital prototype of the history tree is shown on the left, with 
the current node shown in light blue. A digital prototype of the stash is shown in the top-right corner of the window. 

 
Users can also “replace tunnels,” a mechanism identical to generating an instrument except the 
user chooses a subset of tunnels to generate.  
 
By delegating the choice of feature mappers and function families to the computer, we allow the 
user to begin exploring the input feature space and output parameter space without forcing the 
user to find a relationship between the spaces. By choosing “no examples”, the user can create an 
instrument with the click of a button. Since the computer’s choice is pseudo-random, the user can 
generate different mappings simply with successive clicks of the same button. This is a quick way 
for a user without preconceived notions of how the input feature space should map to the output 
parameter space to explore many different mappings. 
 
3. Stash 
 
The stash is a global space where functions, data sets, and tunnels can be saved and copied into 
other instruments. Knowing that they can save valuable parts of an instrument, users will be able 
to go on to (1) modify that instrument without worrying how the valuable parts were affected, and 
(2) create “composite” instruments, where some parts of the instrument came from other 
instruments.  



4. History Tree 
 
The history tree will save all previous states of an instrument, each state at a different node in the 
tree. When the user makes any changes to an instrument, a new branch in the tree will be 
automatically created. The user will be able to access any node in the tree at any time. This has 
two advantages. First, similar to the stash, it allows users to explore any new ideas they have 
without worrying about losing their current progress. Secondly, if users have many paths they 
want to explore from the same node, they can simply explore one path, travel back to that node, 
and then explore the new path. The result will be two leaf nodes that the user will be able to 
compare side by side in the Compare Instruments screen.   
 

Interface for Comparing Mappings 
 
The Compare Instruments screen is a screen where users can select multiple instruments to run in 
quick succession or simultaneously. By allowing users to run instruments in quick succession, we 
give users a convenient way to compare different instruments.   
 
By allowing users to play instruments simultaneously, we encourage them to design for 
ensembles. We also encourage “composite” instruments of a different sort, where the true 
instrument is made up of many “instruments” within the system. 
 

 
Figure 4: The Compare Instruments screen 

 
Training Data Manipulation 

 
Each function family has its own training data set, and a tunnel’s function is instantiated based on 
the function family’s training data (the training data may be ignored if the function family doesn’t 
take examples). This design allows users to remove outputs without affecting other tunnels. It 
also allows users to add inputs and outputs to an instrument without affecting existing tunnels.  
 
Further work should investigate how preprocessing and postprocessing can be used to maintain 
data sets past changes to input and output metadata. For example, suppose there exists a tunnel 
driving computation for a continuous output. If the user decides that output should be discrete, 
then postprocessing can be used to convert the function’s continuous output to a discrete output. 
Without this conversion, the user would have had to generate the tunnel again, this time with a 
function that produces a discrete output. If the tunnel required examples, the user would have also 
had to provide new examples to train the tunnel.  
 



Conclusion 
 
We explore techniques for creating mappings from data in ways that are more appropriate and/or 
faster than supervised learning or manual coding. Our methods for creating mappings allow users 
to generate mappings either with or without providing examples. Our interface facilitates rapid 
and parallel mapping exploration. 
 
We designed new methods for generating mappings given less initial information. We hope that 
by delegating many decisions about mapping generation to the computer (while still giving the 
user the option to override these decisions), designers will be able to better explore the input and 
output spaces.  
 
We implemented a graphical user interface that allows users to automatically generate mappings 
side by side, edit the mappings, and compare them. Our hope is that tunnels, feature mappers, 
function families, and functions help users understand how inputs are mapped to outputs, while 
preprocessors, the stash, and the history tree will give the user enough safety and confidence to 
explore alternate mappings without the risk of losing their current progress.    
 
Future work will incorporate preprocessors and postprocessors (which can help maintain data sets 
between changes in input/output spaces), the stash, and the history tree into the existing graphic 
user interface. There is also much potential for improving the system by investigating which 
functions best map inputs to outputs and by investigating smarter heuristics for automatically 
generating mappings. Finally, further studies will run user evaluations of the system. 
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