
Improvements in Protein Function Prediction
Using Confidence in Protein Interactions

Kathryn Doroschak
University of Minnesota

kdoro@cs.umn.edu

Lenore Cowen
Tufts University

lenore.cowen@tufts.edu

Abstract

Characterizing protein function is a crucial part of un-

derstanding biological systems. Here we improve protein

function prediction by accounting for data quality issues

inherent in protein-protein interaction (PPI) databases.

To accomplish this, we incorporate confidence infor-

mation into the function prediction pipeline. The model

pipeline uses weighted majority voting on the protein-

protein interaction network, with weights defined by short-

est paths distance, confidence, diffusion state distance

(DSD), or DSD with confidence. The result is that incor-

porating confidence weights in general significantly helps

improve protein function prediction. Confidence with DSD

performs especially well, improving by 11.9 pp over Major-

ity Vote with ordinary shortest paths distance and no confi-

dence weights.

Through this study, we have determined that incorpo-

rating confidence as weights improves protein function pre-

diction, yielding greater accuracy than previously possible.

1. Introduction

A major part of understanding biological systems re-
quires understanding and determining protein function. For
this reason, our primary goal is to further improve pro-
tein function prediction. Most computational methods for
function prediction have two main constraints: first, indis-
tinct functional neighborhoods from using shortest paths in
small world protein-protein interaction (PPI) networks, and
second, most methods ignore data quality issues inherent in
PPI databases.

Cao et al. [5] attempted to address the first problem
by combining majority voting and diffusion state distance
(DSD). DSD is a new metric that leverages graph diffusion
to better capture inter-network distances.

Here our focus is on the second limitation, addressing

data quality. We do so by introducing confidence to func-
tion prediction, assigning a score to each edge in the PPI
network and integrating these scores into the function pre-
diction pipeline in a variety of ways.

2. Data and Problem

2.1 Understanding the PPI Network

The heart of our data is the PPI network itself. At min-
imum, such a network consists of a list of interactions, each
specified by two proteins in the network. We chose to use a
PPI network for S. Cerevisiae from the BioGRID database
v3.2.101 [5], as this is one of the most complete and well
connected PPI networks in existence. This network orig-
inally consisted of 6,379 nodes and 324,743 interactions,
but we filtered it down to 5,792 nodes 216,842 undirected
interactions by removing non-ORF proteins and duplicate
interactions and by using only the largest connected com-
ponent of the network. Additionally, each interaction has
experimental metadata with it, as provided by the BioGRID
database. It is this network that we used to develop and test
our protein function prediction improvements.

2.2 Assigning Functional Annotations

The true problem stems from the combination of the
PPI network and the proteins’ functional category labels.
Our overarching goal is to use the properties of the PPI net-
work to predict the functions of proteins contained within
the network. To achieve the latter, we applied the MIPS
functional catalog (FunCat) v2.1 [3] to the PPI as the source
for our labels. MIPS FunCat provides annotations in a lev-
eled, hierarchical fashion, where the deeper levels are more
numerous and specific than those at the higher levels. We
provide results for MIPS levels one, two and three, predict-
ing functions through 2-fold cross validation. In this setup,
the set of labeled proteins is randomly split in half and the
labels on the training half are used to predict the labels on

With regular distance:
d(A,B) = d(B,C)

With DSD:
d(A,B) < d(B,C)

(a) DSD
(b) Majority Vote (Un-
weighted)

Figure 1: Depictions of the two steps in the function pre-
diction pipeline - DSD and Majority Vote.

the testing half. Then the two halves are swapped and we
repeat this process.

2.3 Measuring Performance

Performance is measured based on two characteristics,
accuracy and F1 score. Both characteristics were used by
Cao et al. [1].

Accuracy: If the highest scoring prediction matches
any function actually assigned to the protein, we count it
as correct. Accuracy reflects the percentage of correctly
labeled proteins.

F1 score: Each label in the list of predictions is consid-
ered correct if it matches any of the protein’s actual func-
tions. Precision is the percentage of correct labels relative
to the number of predictions. Recall is the percentage of
correct labels relative to the number of actual functions.

F1 =
2 ∗ precision ∗ recall
precision+ recall

3. Prior Work: Function Prediction Using
DSD and Majority Vote

In general, computational protein function prediction
is carried out by taking advantage of the properties of a
PPI network. Typically, this means calculating shortest
paths distance between pairs in the network, using the re-
sult within the function prediction algorithm as a basis of
comparison between proteins. However, with the recent
development of DSD, we are able to better capture the
distance between proteins and therefore improve protein
function prediction. The DSD paper utilizes the same data
sources (although we use newer versions of the data sets)
and same pipeline as we use here [1]. We repeat the re-
sults, but also vary the usage of DSD and Majority Vote

(described below) to highlight the effects of confidence in
protein function prediction.

3.1 How DSD Works

Many PPIs contain hubs (high degree nodes), which
create a small world property in the network. This property
hurts algorithms that rely on shortest paths, e.g. Major-
ity Vote, because most paths are similarly short. To offset
this, DSD uses graph diffusion to distinguish paths via hubs
from paths via lower degree nodes [1]. This has the effect
of creating distances between proteins that are better spread
out.

Overview of the DSD metric:
Excerpt from Cao et al. [1]:

“Consider the undirected graph G(V,E) on the vertex
set V = v1, v2, v3, ..., vn and |V | = n. He

{k}(A,B)
is defined as the expected number of times that a random
walk starting at node A and proceeding for k steps, will
visit node B. In what follows, assume k is fixed, and when
there is no ambiguity in the value of k, we will denote
He

{k}(A,B) as He(A,B). We further define a n – di-

mensional vector He(vi), ∀vi ∈ V , where

He(vi) = (He(vi, v1), He(vi, v2), ..., He(vi, vn)).

“Then, the Diffusion State Distance (DSD) between
two vertices u and v, ∀u, v ∈ V is defined as:

DSD(u, v) = ||He(u)−He(v)||1

where ||He(u) −He(v)||1 denote the L1 norm of the
He vectors of u and v.”

The original DSD paper goes on to prove that DSD is
indeed a metric, but this exercise has been omitted here for
brevity.

It is important to note that when we talk about adding
confidence as weights within DSD, this is not the same
as calculating “weighted DSD.” What we are doing is us-
ing the confidence values assigned to the edges to weight
the He random walk inside DSD. This is in contrast to
weighted DSD, in which “all new neighbors get a vote pro-
portional to the reciprocal of their DSD distance” [5].

3.2 How Majority Vote Works

Majority Vote [4] can be thought of as “guilt by associ-
ation” – protein functions are predicted based on the closest
neighbors’ functions. To do this, we allocate votes to each
neighbor, either unweighted (equal vote for each neighbor)
or weighted (based on neighbor weights, which in this case
are assigned by confidence). The node is assigned the func-
tion with the most votes, as depicted in Fig. 1b.

Overview of Majority Vote:

1. Gather the t nearest neighbors of node u.

2. Allocate votes for each neighbor.

• Unweighted (equal vote for each neighbor)
• Weighted (vote based on neighbor weights, as

specified below)

3. Assign u the function with the most votes when each
neighbor votes for its own function.

4. Generating Confidence Scores

Confidence values are derived from the volume and
type of experiments conducted in support of each edge.
Multiple publications for an edge serve as verification for
that edge. Additionally, high-throughput experiments tend
to be less reliable due to their tendency to produce false
positives. The cutoff for high and low throughput is 100
interactions [2].

#/Experiments Low* High*
0 0 0
1 80 25
2 90 50
3 95 75

4+ 95 85

Table 1: Confidence score assignments, where 100 is very
confident. The threshold between high and low throughput
experiments is 100 interactions.
*Low and high are short for low throughput experiments
and high throughput experiments.

We experimented with various other confidence meth-
ods, including literature-based without distinguishing be-
tween high and low throughput, Gene Ontology (GO) se-
mantic similarity scores, and MINT scores. These methods
did not fare quite as well, and have been omitted for brevity.

5. Applying Confidence Scores

There are two steps in the function prediction pipeline
and accordingly, there are two ways to add confidence:

1. Majority voting with confidence as weights

2. DSD with confidence as probability in random walks

For Majority Vote with confidence as weights, we al-
locate votes by the edge’s associated confidence. The more
confident we are that two nodes are connected, the more
votes the pair gets.

For DSD with confidence, we weight the random walk
within DSD so that higher confidence edges are taken more
frequently. We normalize the confidence weights with re-
spect to all edges extending from a given node.

6. Results and Conclusions

Adding confidence weights to majority voting helps
significantly, but DSD still performs even better, both with
and without confidence weights as shown in Table 2. DSD
with confidence weights performs best by far, likely be-
cause it addresses the issues of both shortest path distribu-
tion and data quality.

Confidence weights significantly improved both DSD
and ordinary-distance majority voting by accounting for
data unreliability. Accuracy improved 11.9 pp for MIPS
Level 1 from original majority voting to majority voting
using DSD with confidence weights. The F1 score im-
proved 6.6 pp using the same comparison. Performance
even increases relative to the already well-performing orig-
inal DSD. Accuracy improved 3.5 pp for MIPS Level 1
from majority vote using original DSD to majority vote us-
ing DSD with confidence weights. The F1 score improved
1.8 pp accordingly.

In the future, these confidence techniques can be eas-
ily integrated with other function prediction methods; DSD
with confidence weights can be used with any shortest-path
function prediction method simply by replacing ordinary
distance. Additionally, some preliminary work has been
done with combining confidence information for protein
networks with genetic interactions corresponding to spe-
cific proteins. We hope to continue work with this in the
future, and improve protein function prediction even fur-
ther.

Acknowledgments

The author would like to thank her mentor, Professor
Lenore Cowen of Tufts University for her support and di-
rection. She would also like to thank fellow undergradu-
ate Thomas Schaffner at Tufts University for dedicating his
summer to this project, and Professor Benjamin Hescott of
Tufts University for his additional support.

This work is supported in part by the Distributed Re-
search Experiences for Undergraduates (DREU) program,
a joint project of the CRA Committee on the Status of
Women in Computing Research (CRA-W) and the Coali-
tion to Diversify Computing (CDC).

The author would also like to thank Professor Maria
Gini of the University of Minnesota for her encouragement
in applying for DREU.

MIPS 1 MIPS 2 MIPS 3
Accuracy F1 score Accuracy F1 Accuracy F1

Majority Vote (MV) 58.0 45.0 45.3 32.7 40.7 30.4
MV, confidence as weights 65.6 49.2 52.8 38.0 48.4 34.6
MV, weighted original DSD 66.4 49.8 54.7 38.9 50.3 36.1
MV, weighted DSD with conf 69.9 51.6 58.1 41.6 54.5 39.3

Table 2: Summary of MV performance improvements using various confidence techniques, 2-fold cross-validation, and 10
voting neighbors.

References

[1] M. Cao, H. Zhang, N. Daniels, J. Park, M. Crovella,
L. Cowen, and B. Hescott, “Going the distance for protein
function prediction,” 2013, In Review.

[2] Y. Chen, S. Rajagopala, T. Stellberger, and P. Uetz, “Exhaus-
tive benchmarking of the yeast two-hybrid system,” Nature

Methods, vol. 7, 2010, pp. 667–668.

[3] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, and
et al, “The funcat, a functional annotation scheme for system-
atic classification of proteins from whole genomes,” Nucleic

Acids Research, vol. 32, 2004, pp. 5539–5555.

[4] B. Schwikowski, P. Uetz, and S. Fields, “A network of
protein-protein interactions in yeast,” Nature Biotechnology,
vol. 18, 2000, pp. 1257–1261.

[5] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Bre-
itrkeutz, and et al, “Biogrid: a general repository for inter-
action datasets,” Nucleic Acids Research, vol. 34, 2006, pp.
D535–D539.

