
RVO Collision Avoidance in Unity 3D

David Cherry

Abstract

Reciprocal Velocity Obstacles (RVO) method
was used to produce collision avoidance for
crowd simulations generated using the game
engine Unity 3D. Smooth collision avoidance
was produced for multiple agents in the same
environment by using RVO collision avoid-
ance method. There are three methods for
generating crowd simulation using RVO col-
lision avoidance in this experiment. The first
method consists of taking user input on the
starting position, goal position, and speed of
each agent to be simulated and rendered in
the virtual environment and the information
will be exported to a file. The second method
is loading a pre-existing file into Unity for
the information to input for the simulation.
The third method was to start with only
one agent that continuously moves to ran-
dom goal positions and can be duplicated
to produce more agents in his environment.
This experiment was combined with another
collision avoidance method called predictive
forces collision avoidance. An user inter-
ace was developed to choose which collision
avoidance should be displayed and the spe-
cific method for the enviornment to be simu-
lated and rendered in Unity.

1 Introduction

Crowd Simulation consists of producing
movement of a large number of entities, or

characters within a virtual environment. A
few uses of crowd simulation consist of being
used to create emergency evacuation simu-
lations, video game crowd AI behavior, and
recreating places in the past to show how
people would have behaved. The characters
used in the virtual environment are known
as agents and each one is given their own AI
to function in their respective environment.
They are given a set path, destination, and
specific behaviors based on their unique pro-
gramming. One major issue that typically
must be addressed when simulating multiple
AI in the same environment is collision avoid-
ance. Each agent must be able to detect ob-
jects or another agent, and then in turn be
able to veer off the path in a smooth man-
ner to prevent collision. If there is a case
where two agents are both moving towards
each other, then they must also behave in a
way to avoid collision in an efficient manner.

This summer at the University of Min-
nesota, I focused on implementing the colli-
sion avoidance method called Reciprocal Ve-
locity Obstacles (RVO) in the game engine
Unity. Unity is a game engine built in with
a powerful rendering engine designed with
tools to create an interactive 3D environment
[Creighton, 2010]. Unity has a drag and drop
environment for creating games and can be
programed in JavaScript, C, and Boo. The
high level approach we took is outlined in
Figure 1. Information on objects in Unity
would be taken from the environemnt mean-

Page 1

ing from User input or a data file with the
information. The simulation based on the
coding would begin and Unity would render
the scene, objects and information so that
the User would be able to view models, envi-
ronments in a virtual environment.

Figure 1: The flow chart or retrieving in-
formation from the environment(user input
or from a data file), running simulation, and
rendering in Unity

Unity 3D is growing in popularity amongst
developers and can potentially be used in in
virtual environments. Unity is compatible
with software such as Mitsuba and blender
to allow created models to be placed into
the game engine environment. There is a
project going on at the University of Min-
nesota to integrate Unity into a virtual envi-
ronment to recreate ancient life in Greece.
Theyll be able to produce structures, cal-
culate the amount of people that could fit,
and recreate people functioning in their en-
vironment. If these people, the agents in
the virtual world, were walking around the
city, then they would need to know how to
avoid collision to continue on their path. This
is where the RVO for multi-agents method
could be applied. Unity has a variety of uses
such as gaming, simulations, and even design.
Unity has been used for robotic design by
creating a functional virtual robot in Unity,
then actually creating it based on the Unity
model [Mattingly et al., 2012]. Other uses
for Unity include application development
that can port to iPhone, Android, and PCs.

2 Previous Work

2.1 Crowd Simulation for prac-
tical use

Crowd simulation techniques have been used
to create emergency situation simulations. A
mixture of social sciences and computer im-
plementation of modeling using multi-agent
systems with their own programming behav-
ior was used to reproduce emergency situa-
tion behavior. One recurring issue is mea-
suring how a group of people would react
in a real emergency panic situation. To re-
ceive highly accurate results, it would re-
quire placing people in real emergency sit-
uations. However, making observations from
pedestrian crowds could assist by showing the
same patterns for reproducing the behavior.
A person, that does not know the structure
of the building as well, would focus on find-
ing the nearest escape route, would follow the
crowd and their velocity would rapidly in-
crease [Almeida et al., 2013]. This scenario
is illustrated in Figure 2.

Figure 2: Crowd trying to escape from
smoke-filled room [Almeida et al., 2013]

There have been specific tools created to
generate environments with emergency evac-
uation environments. One tool called Col-
labmap has been created to generate en-
vironments, this could be combined with
crowd simulation methods to create vir-
tual scenarios, the effectiveness, and how
long it would take to evacuate the building

Page 2

[Ramchurn et al., 2013]. Some crowd simu-
lation software is made for specific circum-
stances outside of buildings such as an evac-
uation ”from an area under a terrorist bomb
attack” [Shendarkar et al., 2006]. The cre-
ators of that experiment focused on their own
BDI (belief, desire, intention) agent frame-
work they’ve created.

There are three main reasons for devel-
oping computer simulations for crowd be-
haviors: first to test scientific theories and
hypotheses; second, to test design strate-
gies; third, to create phenomena about which
to theorize [Almeida et al., 2013]. An un-
derstanding of crowd behavior is needed to
replicate the behaviors of a real crowd for
crowd simulation. Each agent also has var-
ious attributes to determine their behavior
which consists of state, speed, vision, re-
action time, collaboration, insistence, and
knowledge [Almeida et al., 2013]. Vision is
the aspect that depends on detecting obsta-
cles and other agents. This is where collision
avoidance would be applied due to the detec-
tion aspect.

The practice of crowd simulation based
on cognitive, psychological, and sociological
factors stem from the works of Craig W.
Reynolds [Reynolds, 1987]. This paper fo-
cused on how he implemented behaviors of
a flock of birds. His goal was to capture the
behavioral aspects consisting of their move-
ments to interactions. Steps are being made
to expand upon his ideals on cognitive be-
haviors to try and govern what a charac-
ter knows and how knowledge is acquired
[Funge et al., 1999]. This can stem back to
the knowledge aspect for emergency evacua-
tions because if a character knows the fastest
method to escape, then he would not follow
the crowd in a panic similar to the situation
displayed in Figure 2.

2.2 Methods for Real-Time
Multi-Agent Navigation

Reciprocal Velocity Obstacles (RVO) is a
concept for local reactive collision avoid-
ance which implicitly assumes that the other
agents make a similar collision-avoidance
reasoning[van den Berg et al., 2008]. Each
agent contains information on all of the other
agent’s current position, velocity and exact
shape. Instead of giving each agent a new ve-
locity to completely avoid collision with the
other agents velocity obstacle, RVO intro-
duces a method of taking the average of the
current velocity and the velocity outside of
the other agent’s velocity obstacle. This will
allow the agent to choose the velocity closest
to its current velocity. Both agents will be
able to take the closest velocity to their pre-
ferred velocity resulting in both agents each
take an equal share of the work to success-
fully avoid collision. RVO is not only limited
to being used in a virtual environment. Colli-
sion avoidance is also a fundamental problem
in robotics [van den Berg et al., 2011].

The problem of having collision free motion
and smooth movement for multiple robotic
agents are still prevalent in the world to-
day. Optimal reciprocal Collision Avoid-
ance is just one example of a collision avoid-
ance method that was used for the multiple
robotic agent navigation [Snape et al., 2010].
This method and RVO both stem from Veloc-
ity Obstacles (VO) to avoid future collision
[Fiorini and Shiller, 1998].

3 RVO in Unity

The goal for my project this summer was to
implement a fully functional project in unity
that could implement reciprocal velocity ob-
stacles (RVO) collision avoidance to multiple
agents. I started to do this by first creating
an environment that consisted of six cubes
and a flat terrain to begin working. In the

Page 3

scripting, I coded the various formulas from
the RVO paper to implement them into Unity
[van den Berg et al., 2008].

First, I began learning Unity’s mechanics
and how to create and move objects. Instead
of human models, I began with using cubes
as game agents. After figuring out how to
manage objects and scripts using the Unity
Editor, I started to implement RVO formulas
in code.

D = |vpreferred − vtest| (1)

Equation 1 contains variable D which rep-
resents the magnitude of the preferred veloc-
ity minus an arbitrary test velocity. Veloci-
ties are sampled to find the best velocity to
take for avoiding collision. I found that test-
ing 100 samples of arbitrary velocities was
enough to produce a nice motion. This value
is added into Equation 2 for the RVO for-
mula.

Score = ((w/(τ + 0.001)) +D) (2)

The score has a time returned to it. The
smallest time for the score determines which
test velocity should be taken.

Equation 2 contains the Score variable in
my script. RVO finds the minimum time of
collision and then finds the best velocity that
is closest to its own to avoid collision. This
score function will have a time returned to
it and the smallest time returned to score
will indicate that the test velocity used for
calculating that score is the best velocity to
take for collision avoidance. The τ represents
the time to collision and contains the closest
time to collision for each agent. The w vari-
able is a specific number given to determine
the importance on having the agent focus
on collision avoidance or the goal position.
The higher the w value, the more the object
will focus on heading towards the goal. The
lower the w value, the more the object will
be geared towards collision avoidance. Given

the above information, we can find how long
the time is to a potential collision as follows.
First, we must compute the values for Equa-
tions 3, 4, 5 as shown below.

a = (|vtest − vobj|) ∗ (|vtest − vobj|) (3)

b = 2 ∗ ((|(vtest − vobj)|) · (Pcur ∗ Pobj)) (4)

c = |(Pcur − PobJ)|2 − (rcur ∗ robj) (5)

Equations 3, 4, 5 each contain information
on the current object position (Pcur), the ap-
proaching object position (Pobj), the radius
of both objects (rcur, robj), and the arbitrary
test velocity (vtest). Object Velocity (vobj)
in Equation 3 refers to the approaching ob-
jects current velocity while the arbitrary ve-
locity (vtest) being tested for collision avoid-
ance. Equations 4 and 5 have information
about the current positions of both objects
to give accurate information on the time to
collision. These values will be placed into the
quadratic formula for calculating the time to
collision.

(t1, t2) =
−b±

√
b2 − 4ac

2a
(6)

Where t1 and t2 are the positive and negative
solutions.

τ = min(t1, t2) (7)

The min takes in the smallest non-negative
value.

TAs a result of the quadratic formula, two
times may be produced to represent the time
to collision. If both of these values are pos-
itive, then the lesser value will be the one
stored to the minimum time to collision. If
both of these values are not positive or both
are negative, then there is a condition set to

Page 4

not accept the time value because this im-
plies that the objects would not collide. If
one value is negative and the other is posi-
tive then that means it is currently colliding.
The smallest time from the two positive val-
ues are stored into τ from Equation 7 to rep-
resent the closest time to collision. After cod-
ing fully functional RVO method into Unity,
I ran the code with cubes show by Figure 3
below.

Figure 3: Cubes with random goal positions
using RVO collision avoidance

The cubes were given a randomized po-
sition and after they reached a small dis-
tance away from their goal position, they
were given another goal position to navigate
to. When two cubes were about to collide, us-
ing RVO collision avoidance, they were able
to detect each other and avoid collision to
continue towards their goal position. The
next task assigned was to be able to spec-
ify the cube’s starting position, ending po-
sition, and speed as input then to run that
in the game environment while still having
RVO applied. I created a GUI interface al-
lowed users to create their own text files with
this format displayed in Figure 4.

The user interface that was created in
Unity exports a file with this format and
takes that information to create the speci-
fied objects, then lead them towards their
goal position. The next step was to move
onto actual animated models instead of us-
ing cubes as my agents. The human models
were imported inside of unity to replace the
cubes. One issue was adjusting the models to
face their current position and animating the

Figure 4: The format for files to be imple-
mented in Unity

models to walk, but this was solved by us-
ing a rotation method implemented in Unity.
After both issues were resolved, I finally have
RVO collision avoidance with human agents.
This is shown in Figure 5 below.

The next task was to create a button the
user interface that will allow a previously cre-
ated file to be read and another button that
will allow the original random goal position
program to run. Implementing the read a
file method was similar towards reading the
created file which lead to no difficulties. The
random goal position assigned to each objects
was already created and also integrated into
the program. This scene begins with one in-
dividual and to duplicate that individual, I
have the user press ’T’. The starting scene is

Page 5

Figure 5: Overhead view of RVO collision
avoidance

shown in Figure 6 and the scene with dupli-
cated instances is shown in Figure 7.

Figure 6: Starting with one agent with ran-
domized goal

Figure 7: Duplicate of agents with random-
ized goals using RVO collision avoidance

The final task was to combine my
project with Jassiem Ifill, another DREU
student from my lab, who was imple-
menting another crowd simulation tech-
nique, predictive force collision avoidance
[Karamouzas et al., 2009]. We had to inte-
grate both of our projects into one project
that was supported by the same user inter-
face. This gives the user options of observing

the RVO collision avoidance method or the
predictive force collision avoidance method.
After combining our projects, we created a
fully functional project with collision avoid-
ance in the same type of environment using
human animated agent.

4 Conclusion

The complete project is able to run both
reciprocal velocity obstacles collision avoid-
ance and predictive forces collision avoid-
ance. There are differences in how the code
operates in both projects; however, both are
able to create and run a file with the user
specifications for the human agents while be-
ing able to avoid collision. They also are able
to read a previously made text file as long as
it has the correct format for being read. In
the RVO method, there is an option to du-
plicate from the original human agent to add
more human agents all with arbitrary start-
ing positions, and goal positions in the same
environment with RVO collision avoidance.

One limitation for Unity is the amount of
agents that can move and be displayed on the
screen while running smoothly. Unity tends
to slow down a great deal when to many
agents are placed in the same environemnt.
For future experiments RVO collision avoid-
ance could be used in a larger custom envi-
ronment such as a city. Many different agent
models and stationary obstacles could be put
into place to further test RVO collision avoid-
ance. Another feature to create after gener-
ating this environment is a first person user
controlled character. This will allow a closer
view on how smooth the RVO collision avoid-
ance s while the other agents avoid collision
with the user’s controlled agent.

5 Acknowledgements

I’d like to thank Dr. Stephen Guy for his
guidance, assistance, and methods for RVO,

Page 6

Unity and the project as a whole. I also
would like ot thank Dr. Ioannis Karamouzas
for his help with Unity and crowd simula-
tions.

References

[Almeida et al., 2013] Almeida, J. E., Ros-
seti, R. J., and Coelho, A. L. (2013).
Crowd simulation modeling applied to
emergency and evacuation simulations us-
ing multi-agent systems. arXiv preprint
arXiv:1303.4692.

[Creighton, 2010] Creighton, R. H. (2010).
Unity 3D Game Development by Example:
Beginner’s Guide. Packt Publishing.

[Fiorini and Shiller, 1998] Fiorini, P. and
Shiller, Z. (1998). Motion planning in dy-
namic environments using velocity obsta-
cles. The International Journal of Robotics
Research, 17(7):760–772.

[Funge et al., 1999] Funge, J., Tu, X., and
Terzopoulos, D. (1999). Cognitive mod-
eling: knowledge, reasoning and planning
for intelligent characters. In 26th annual
conference on Computer graphics and in-
teractive techniques, pages 29–38.

[Karamouzas et al., 2009] Karamouzas, I.,
Heil, P., van Beek, P., and Overmars,
M. H. (2009). A predictive collision avoid-
ance model for pedestrian simulation. In
Motion in Games, volume 5884 of Lecture
Notes in Computer Science, pages 41–52.
Springer.

[Mattingly et al., 2012] Mattingly, W. A.,
Chang, D.-j., Paris, R., Smith, N., Blevins,
J., and Ouyang, M. (2012). Robot de-
sign using unity for computer games and
robotic simulations. In Computer Games
(CGAMES), 2012 17th International Con-
ference on, pages 56–59. IEEE.

[Ramchurn et al., 2013] Ramchurn, S. D.,
Huynh, T. D., Venanzi, M., and Shi, B.
(2013). Collabmap: crowdsourcing maps
for emergency planning.

[Reynolds, 1987] Reynolds, C. W. (1987).
Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics,
21(4):24–34.

[Shendarkar et al., 2006] Shendarkar, A.,
Vasudevan, K., Lee, S., and Son, Y.-J.
(2006). Crowd simulation for emergency
response using bdi agent based on virtual
reality. In Simulation Conference, 2006.
WSC 06. Proceedings of the Winter, pages
545–553. IEEE.

[Snape et al., 2010] Snape, J., Guy, S. J.,
van den Berg, J., and Manocha, D. (2010).
Smooth coordination and navigation for
multiple differential-drive robots. In Proc.
IEEE RSJ Int. Conf. Intell. Robot. Syst,
pages 1–13.

[van den Berg et al., 2011] van den Berg, J.,
Guy, S. J., Lin, M., and Manocha,
D. (2011). Reciprocal n-body collision
avoidance. In Cédric Pradalier, Roland
Siegwart, and Gerhard Hirzinger (eds.),
Robotics Research: The 14th International
Symposium ISRR, volume 70 of Springer
Tracts in Advanced Robotics, pages 3–19.
Springer-Verlag.

[van den Berg et al., 2008] van den Berg, J.,
Lin, M. C., and Manocha, D. (2008). Re-
ciprocal velocity obstacles for real-time
multi-agent navigaiton. In IEEE Inter-
national Conference on Robotics and Au-
tomation (ICRA).

Page 7

