
DREU	 2013	 Final	 Paper	

Encoding and Navigating Fauvel:

XML and Search Capabilities for Digital Fauvel

Alison Y. Chang

Mentor: Rebecca Fiebrink, Princeton University

Princeton University Soundlab – Digital Fauvel

Mentors: Rebecca Fiebrink & Anna Zayaruznaya
Undergraduates: Alison Y. Chang, Jamie Chong, Brendan Chou
Humanities Scholars: Jamie Greenberg, Jenna Phillips, Michael Scott Cuthbert

Alison	 Y.	 Chang,	 Summer	 2013	

	 2	 	

1. Introduction to Fauvel
 The Roman de Fauvel is a 14th century satirical medieval poem about a horse
named Fauvel who corrupts France. The mix of poetry, images, and music in this
important early multimedia object is both beautiful and intriguing, and the questions
raised in its analysis are highly pertinent to both modern computing and humanities.
However, to study this 18” x 26” manuscript, it is currently necessary to consult at least
half a dozen sources at once: a translation from old French to modern French, another
from French to English, modern notation for polyphonic music objects, another for
monophonic music, explanation of the images, and more. Understanding Fauvel
consequently includes unnecessary juggling of all of these resources, hindering the
process of studying the work or reading it as a story, as Fauvel’s creators had intended.

Our objective is therefore to create a digital version of the Roman de Fauvel on
the Samsung SUR40 (previously the Microsoft Surface 2.0), a large, 40” screen size,
multi-touch tabletop. Our Digital Fauvel brings together these existing resources without
diminishing the experience of viewing the original manuscript in its true size, color, and
style. Over the course of this summer, we aimed to build an interface that allows users to
view pages of Fauvel with added ability to zoom, pan, or display different translation
overlays, with a functioning sidebar that would allow for text search and the beginnings
of studying music objects. Working with both computer scientists and musicologists,
building off of prior research on XML encoding and UI design, and balancing the
efficiency needed for computation with the functions emphasized by medieval scholars,
we strove to create a Digital Fauvel that would not only stay true to but enhance the
design and effects of the original Roman de Fauvel.

2. Prior Research
As of the beginning of summer 2013, the Digital Fauvel team had acquired the Microsoft
Surface 2.0 but had not begun coding. However, several Princeton University
undergraduate computer science students had conducted preliminary research for the
creation of Digital Fauvel.

2.1 Data Representation for the Digital Fauvel – Alan Thorne, ’13
Alan Thorne consulted existing research on digital text representation (namely the

Text Encoding Initiative, or TEI1) to propose an XML based encoding scheme for Fauvel
[1]. He divided the encoding into two parts, content and layout, with the former
indicating the content of each page (i.e., poetry/music/image objects) and the latter
specifying the location of each object on that page. Thorne’s work served as the basis for
our creation of four documents: three content XMLs (original text, modern French
translation, and English translation) and one layout. As I designed a standard for the
content XMLs, I often worked directly with Thorne to incorporate newly discovered
elements into the existing structure in a way that makes sense both to musicology
scholars and computer scientists (see 3.1 for details).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 For more info, read http://www.wwp.brown.edu/outreach/seminars/tei.html.

Alison	 Y.	 Chang,	 Summer	 2013	

	 3	 	

2.2 Interaction Design for Medieval Multimedia – Andrew Callahan, ‘13
Andrew Callahan explored interface design for Digital Fauvel [2], referring to the

fundamentals of human-computer interaction (HCI) techniques and existing programs
written for the Microsoft Surface. Intermittently getting feedback from musicology
graduate students, he created and refined paper prototypes, observing the natural actions
they would use to perform common tasks like navigation, search, and translation, taking
note of any confusing or missing functionality. His design of a main window that
displays openings (two-page spreads) of the Fauvel manuscript with a sidebar on the
right side that houses operations like search was the springboard for the UI design that we
implemented this summer; my work in particular was on the sidebar, namely the search
functionality (see 3.3).

3. Search Capabilities
My development of search capabilities for Digital Fauvel can be broken down into three
sections: the encoding of the three Content XML files (3.1), the writing of back-end code
for search functionality (3.2), and the design and implementation of a front-end UI for the
sidebar (3.3), specifically for the “Search” application tab.

3.1 Encoding of XML Content Files
The original text of Fauvel (poetry, music lyrics, and image captions) and modern

French translations of most original text were available in an OCR-enabled PDF of the
Armand Strubel edition [3], while the English XML was created from Eliza Zingesser’s
translation [4]. The process of creating content files involved writing a Java program that
took in the text, which was copied and pasted from Strubel or Zingesser, and reformatted
it into XML form, identifying each object correctly, counting line numbers, etc. Although
the basic structure of encoding had been laid out by Alan Thorne (see 2.1), the process
included many challenges that arose at the intersection of Fauvel as a digital project
versus Fauvel, the subject of musicology, particularly in terms of organizing and
categorizing the objects of Fauvel in a way that makes sense to users from both fields.

While the English translation included poetry only and was therefore quite simple,
Strubel’s edition included text about almost every object in Fauvel. The guiding principle
behind the design of the encoder program for the latter, TextReader.java, was to make the
human’s job as simple as possible, to allow for people to copy and paste from the PDF
without a high understanding of how the program works to interpret the text. In some
cases, the computer would be able to interpret objects based on the content of the text
itself; a short line starting with “Fo” (folio) indicated the start of a new page, and a line
beginning with the name of a music genre (of which there are seventeen types) indicated
the start of a music object. However, for most objects, the computer needed certain cues
to identify each line of text as belonging to poetry, music lyrics, or image caption.
Consequently, the human would also need to add in simple cue-lines at the start and end
of each object (i.e. “STARTPOEM”, “ENDMUSIC”, or “ENDFOLIO”).2

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 See the Instructions.txt document in our repository: https://code.google.com/p/digitalfauvel.

Alison	 Y.	 Chang,	 Summer	 2013	

	 4	 	

The following sections describe tricky or interesting challenges that have
implications reaching beyond Fauvel, shedding light on the questions that arise when
representing a humanities object in a digital form.

3.1.1 Columns and objects
 While XML encoding requires a strict object hierarchy, regulated by the nesting
of nodes, a manuscript and its objects have much looser conceptual and layout
hierarchies. In many instances, elements that we, as humans, can easily describe and
understand on a single page do not easily fit into the structure typically expected by a
computer reading from XML. As a result, the encoding process involves making
decisions about how to best represent Fauvel in a way that reflects our natural perception
of a manuscript, while organizing the elements into a hierarchy understandable by
technology as well.

For example, it is natural to think of a page as a container that aggregates
columns; in Fauvel, each page has three: a, b, and c. It is tempting to then think of a
column as aggregating objects—poetry, music, or images—but this organization is
quickly rendered unsuitable by the numerous objects in Fauvel that span multiple
columns or even multiple pages. One potential solution is to regard a “column” as an
attribute, with an object appearing in columns a and b containing the attribute
column=“ab” or “column =“a,b”, both of which create complications when
searching for all objects that, for example, appear in column “a”; the values of “ab” and
“a,b” would not match the search query. Alternatively, a column could be a tag:

<object>

<column>a</column>
<column>b</column>

</object>

This approach, while less concise, would perhaps be the most appropriate if we wished to
include “column” information in the Content XML, as preferred by musicologists like
Anna Zayaruznaya. However, after further discussion with Thorne and Fiebrink, I have
concluded for the time being that it would be best to ignore columns in the Content
XMLs and indicate them in the Layout XML instead.

3.1.2 Drop caps encoding
 As mentioned earlier, we split the encoding of Fauvel into two types of XML:
content and layout. For the most part, this division is easy enough to grasp. However, in
the case of drop caps, there is no simple boundary between content and presentation.
Making a decision about where and how to encode drop caps therefore involves
exploration of what information we (as scholars) expect from an XML encoding, and
how we intend to use that information.

Drop caps are an intriguing element of medieval manuscripts, a larger, decorated
initial character marking the start of a new idea in poetry or a new voice or stanza in
music. Two reasons for including drop caps in an XML encoding of Fauvel would be
allowing potential study of drop caps only and incorporation of drop caps into our
translation overlays. In terms of translations, we decided that it did not make sense to

Alison	 Y.	 Chang,	 Summer	 2013	

	 5	 	

include drop caps, especially since the first letter of a line of text is often different in each
translation.

We chose to encode drop caps for the original text, but many questions remained
as to how. The dual nature of a drop cap letter as both a visual element and a textual one
complicates its inclusion in the drop cap (<dc>) and poetry text (<l>, for line) tags; would
the text be split between the two tags, or could an embellished letter belong to both?
Furthermore, what kind of text has the drop cap property: a single letter, the entire word,
or the entire line? The varying sizes of drop caps that appear in Fauvel—most are four
lines of poetry tall (see Figure 1), but some are two (Figure 2)—add further complication.
Are these different types of drop caps, or is “height” an attribute worth indicating for
every encoded drop cap? Many answers to these questions depend on underlying
classifications of drop caps as art versus text, categories that are easy for us to
comprehend and negotiate in a humanities sense but harder to reconcile when we are
forced to draw clear cut lines for technology.

3.1.3 Counterparts

As mentioned briefly in 3.1.1, many of the music objects in Fauvel stretched
across multiple pages. While this is a simple enough concept for human minds, it proves
to be trickier in a digital sense. Since each object’s ID tag includes its page number, a
music object that spans more than one page could either have one tag and exist as a single
part or be broken into several parts, each with a unique tag. In the latter case, we would
then need a way to identify that several tags are actually referring to parts of the same
object. Albeit more complicated, the second option would more accurately represent the
structure of the music object in Fauvel, so I created a special Counterpart object that had
a primary String “name” (the first tag) and a list of other names (the other tags) along
with methods to match alternative tags with the primary one. The lyrics within the music
object would also need to be split up into parts; although Strubel did not indicate these
page breaks in his edition, I referred to actual images of Fauvel’s folios to divide up the
original text and used my best judgment for the other translations. Since the structure of
the manuscript itself was to include whatever fit on that page and then switch to a new
one, there were many lines or even words that split across page breaks. This break
introduced a new issue of whether the word should be included within the tag of the first
page, the second, or both, keeping in mind the risks of losing searchability.

Figure	 1:	 Drop	 cap	 (four	 lines	 tall)

Figure	 2:	 Drop	 cap	 (two	 lines	 tall)

Alison	 Y.	 Chang,	 Summer	 2013	

	 6	 	

3.2 Search functionality: Back-end code
The biggest challenge in developing back-end code (written in Visual Studio

using C#) for text search was striking a balance between efficiency and meeting user
expectations created by popular search engines like Google. Although the user was
searching for text that could appear in poetry, music lyrics, or image captions, we decided
that the search result should also include other context clues like line numbers, page
numbers, and translations. Results appear as a list, and users can select promising results
to view in a “closeup” section (Figure 3). Selecting the result in the “closeup” prompts
the opening of a new tab in the main UI, flipped to the page of that result (Figure 4).

Figure	 3:	 The	 search	 tab

Alison	 Y.	 Chang,	 Summer	 2013	

	 7	 	

	
	

Figure	 4:	 Opening	 of	 new	 tab	 from	 search	 result	 closeup

3.2.1 Thumbnails
 As seen in Figures 3 and 4, a thumbnail is associated with each search result. The
details of making thumbnails involved two major considerations: which part of an object
the thumbnail should depict, and the efficiency of programmatic thumbnail creation. Our
decisions required us to predict the information a user would want and need to see in
order to determine whether a particular search result was worth further exploration.
 In terms of the actual thumbnail content, music objects were the most complex
because of their tendency to span columns or pages. In the layout XML, this meant that a
single music object could have several sets of coordinates. The question was which set of
coordinates we would use for a result, especially if the search query only appeared later
in the object. Our final decision was to use the first thumbnail for each object, opting to
show the user the more recognizable beginning of the object instead of an ambiguous
image from the later part of the object.

Since our program would now require only one thumbnail per object, our second
issue was simplified: we could create thumbnails ahead of time using a set of command
line image editing tools called Imagemagick.3 Due to the extremely high quality of our
scans (each 5250 by 7350 pixels), each thumbnail originally took two seconds to create.
Now, we could return more than ten results every second, a vast improvement.

3.2.2 Multi-word search
 Although searching for a continuous multi-word phrase is simple, it is much
trickier to search for multiple words that appear in the same vicinity in any order. How
close together do words need to appear to qualify as part of a single search result? The

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 http://www.imagemagick.org/script/index.php

Alison	 Y.	 Chang,	 Summer	 2013	

	 8	 	

answer depends on whether someone searches a phrase like “Fauvel Fortuna” to find a
small section of text in which both words appear, or if the user is really searching for
sections of the poem in which both Fauvel and Fortuna are key characters. If the user
desires the latter, in which search words are more like keywords or tags than actual text
search queries, the search breadth would need to be much wider (i.e., allowing for words
to appear 10 lines apart instead of 3–5), or perhaps passages of text would need to have
the added attribute of “keywords” and “tags”.
 Another question is the percentage of search words that must appear in a given
section of text to qualify as a result. For example, if a user searches for five words, does
he or she only expect results with all five? At the other extreme, would inclusion of
results matching only one word out of five clutter the screen and add unnecessary delay?
To keep processes fast while guiding the user towards similar (and more fruitful) queries,
I also considered populating the search result list with full matches only but including a
list of similar searches, each indicating the number of results that search would find.
Professor Fiebrink and I discussed these potential approaches, and we concluded that the
final decision would require extensive user testing, observing what people using Digital
Fauvel expect and prefer from the search application. For the time being, I limited our
returns to results that include all of the search words within a five-line span, allowing for
future adjustment.

3.3 UI design prototyping and implementation: Sidebar and Search
Following Andrew Callahan’s style and ideas for the main Digital Fauvel UI (see

2.2), I created a series of prototypes for the sidebar and the search application with pencil
and paper and later in WPF4. After working to refine the designs by getting feedback
from both humanities scholars and computer scientists, I incorporated the code into our
main UI, adjusting as necessary to account for the touch events and other demands of the
Microsoft Surface.

The first step was to decide how to fit search, annotation, music studying, and
other capabilities into the same sidebar. Although the Surface has a very large screen, we
did not want to clutter it and risk overwhelming users with too many buttons and
sections. However, we wanted the different functions to be easily discoverable and
usable. After creating a UI for the entire sidebar, my next responsibility was to design a
UI for the search application and then combine it with the back-end search capabilities
(see 3.2).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4 Windows Presentation Foundation. See http://msdn.microsoft.com/en-us/library/aa970268.aspx.

Alison	 Y.	 Chang,	 Summer	 2013	

	 9	 	

3.3.1 “New tab” sidebar design
I settled on a sidebar design inspired by “Google

Chrome” (see Figure 4), with the default screen set to a
“new tab” canvas on which each application is neatly
displayed as an icon. Tapping on an icon opens a new tab
of that kind, and users could easily adjust the number of
tabs open for each application. This solution proved to not
only use screen space efficiently but also indicate that the
addition of new functionalities for Fauvel would be easy to
develop and incorporate, an important message to put
forth, as many other coders will continue our work on the
Digital Fauvel project, and we hope to set a well-designed
but widely applicable precedent for other digital
humanities projects in the future as well.

3.3.2 Advanced search

For the search application, one major debate was the display of advanced or
extended search options. I wanted to keep the default design (Figure 5) as simple as
possible but minimize confusion and optimize discoverability. After trying out various
word-less buttons such as a black, triangular down arrow (intended to open up an
extended options panel), user feedback led me to change the design to a short, wide,
rectangular “More Options” button that would open up additional user preferences for
search settings (Figure 6).

Figure	 4:	 "New	 tab"	 in	 Sidebar

Figure	 5:	 Simple	 search Figure	 6:	 Advanced	 search

Alison	 Y.	 Chang,	 Summer	 2013	

	 10	 	

3.3.3 Search suggestions
Many measures were taken to avoid user confusion, especially the erroneous

conclusion that a certain query has no matches when the return of zero results was
actually due to a user’s “mistake”. For example, if any default settings have been
changed, after minimizing the “extended options” panel, the “More Options” button
glows a different color (see Figure 3) to attract attention and prompt users to check their
current settings. If the search result tab control is open to a tab with no results but another
tab does have results, it automatically switches to the latter, to avoid a user reading “0”
and assuming that refers to all three genres. Basic hints and error messages have been
added to “0” result tabs, such as information about music lyrics only being available in
original or modern French (but not English). Eventually, I hope that the search
application will be further developed so that low or no return search queries will prompt
suggestions (see 3.2.2 for similar discussion), perhaps with each suggestion automatically
launching a new search upon user selection.

4. Conclusion
Building upon Callahan and Thorne’s prior research for Digital Fauvel, our

team’s role this summer was to lay the groundwork not only for future Fauvel scholars
and contributors but also for other groups of musicologists and coders who wish to
explore similar cross-disciplinary projects involving different manuscripts or other
significant works in the humanities. All of our code (the Java programs used to encode
XML files, our main C# code for the Surface, and many documents detailing our thought
processes and methodology throughout) is available in a Google code repository5, in
hopes of inspiring others to contribute to our project, adapt it for other technology, or
apply it to a different manuscript. As we designed the UI and structured the code, we
therefore strove to keep things flexible, recording the challenges we faced in encoding a
multimedia object in XML and allowing easy addition of another language’s translation
of Fauvel or a new sidebar application.
 Digital Fauvel lives at the intersection of two disciplines: computer science and
musicology. As a devoted musician newly discovering a passion for computer science, I
am particularly intrigued by the exciting questions stirred up by Digital Fauvel’s creation
as the demands and expectations of the two fields conflict and interact. The application of
computer science to musicology complicates and challenges our concepts of technology
and how it can be used to help us in both ordinary and high-level endeavors. Just as the
Roman de Fauvel still serves as an important example of early multimedia work, with
writing, art, and music coming together to create an incredible story, perhaps the Digital
Fauvel will serve as a notable example of cross-disciplinary studies for centuries to come.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5 https://code.google.com/p/digitalfauvel/

Alison	 Y.	 Chang,	 Summer	 2013	

	 11	 	

References
1. Thorne, Alan. Data Representation for the Digital Fauvel. Independent work report,
Princeton University, Spring 2013.

2. Callahan, Andrew. Interaction Design for Medieval Multimedia. Independent work
report, Princeton University, Spring 2013.

3. Strubel, Armand. Editor. Le Roman De Fauvel. Paris: Librarie Général Française,
2012.

4. Zingesser, Eliza. Translator. Le Roman De Fauvel. Paris: Librarie Général Française,
2012.

