
The Title of our research is I-ECS Inclusive Exploring CS Curriculum Enhancement as 

Face-to-Face and Online Support for Visually Impaired, High School Students. 

 

Participants: Caril Carrillo, Danniel Fehrenback, Lindsey Ellis, Scott Jordan, Stephanie 

Ludi, Tommy Suriel 
 

Abstract 

 

(R.I.T) Rochester Institute of Technology, proposes the Inclusive Exploring Computer Science 

(I-ECS) curriculum as a set of curricular and tool-based enhancements for visually impaired high 

school students. I-ECS will be conducted via face-to-face and online support for cohorts of 

visually impaired high school students. While innovations have resulted in assistive technology 

for people with disabilities, gaps remain in the level of participation in university-level 

computing degree programs by the visually impaired. A significant factor is the lack of 

precollege preparation in courses that promote success in computing degrees. Isolation, the lack 

of role models and access to resources contribute as well. 

The proposed project strives to increase the participation of students with visual impairments 

through better preparation and support. The overall goals are to increase access to an established 

curriculum (Exploring Computer Science) and success within the area of computing for students 

with visual impairments at the high school level. The development of programming tools and 

online modules will provide access where gaps exist in current software. The project team will 

assess the degree to which original Exploring Computer Science (ECS) can be made accessible 

to high school students who are visually impaired. The comparison in student achievement and 

attitudes about Computer Science will also be conducted between students using the ECS 

curriculum and those using the I-ECS curriculum in order to evaluate the similarity of the two 

curricula. By design, the I-ECS project intends to increase participation in computing by 

individuals with visual impairments at all socioeconomic levels via student and educator support. 

The project will involve students, parents and educators from around the nation. The project will 

be evaluated using student and parent surveys, student interviews, student projects made through 

I-ECS, and system data collected on the I-ECS website (e.g. times and duration of use, online 

collaboration and interaction). 

 

Introduction 

 

―Estimates vary as to the number of Americans who are blind and visually impaired. According 

to one estimate, approximately 10 million people in the United States are blind or visually 

impaired.
 
Other estimates indicate that one million adults older than the age of 40 are blind, and 

2.4 million are visually impaired.
 
Over the next 30 years, as the baby-boomer generation ages, 

the number of adults with vision impairments is expected to double.
 
Recent figures also indicate 

that only 46% of working-age adults with vision impairments and 32% of legally blind working-

age adults are employed.‖[1] 

 

This project helps the visually impaired student to be  better in computer science. We found the 

best softwares used nowadays to help the visually impaired use computers. We found 

http://www.rit.edu/


softwares,  like Jaws, iSonic, Voice Over, Jbrick, all these softwares are free and help people  be 

in the same side of normal people. 

 

The activities in the Curriculum help the students understand very important concepts in the field 

of computer science.  At the beginning we have the students perform activities that do not 

require the use of computers to understand computer science concepts. Later we have the 

students use the different softwares named above to do other activities regarding the field of 

computer science. 

 

We expect that the students with these activities and softwares gain a very good knowledge of 

what is computer science and its basic concepts. 

 

Related Work 

 

―An ACE for Visually Impaired Students in Computer Science 

 

Enter Project Accessible Computing Education (ACE), an NSF-funded initiative at the Rochester 

Institute of Technology (RIT). The project is designed to help prepare visually impaired middle 

school and high school students participate in computer science programs at the collegiate level. 

Project ACE's ultimate goal is to increase the number of visually impaired students pursuing 

degrees in computer science and give them the foundations they need to be fully successful in 

their studies and beyond. 

 

The project is focused on three areas: better preparation for visually impaired students before 

college, support for these students as they face challenges in computing that other students do 

not, and educating teachers in how to best help these students learn and achieve‖.[2] 

 

 

Approach 

 

First we started with the CS Unplugged activities which do not require the use computers. 

 

Activity 1: Introduction to iSonic and Sonification. 

 

This activity makes use of iSonic (http://www.cs.umd.edu/hcil/audiomap/), a program that uses 

sonification to display geographic data to blind users. It can be used by both sighted and visually 

impaired users. It is designed from the ground up to be completely accessible.It will only work 

on Windows.  

 

A drawing tablet is helpful on the last step of the tutorial. It must be set up so that the drawing 

surface is proportional to the screen (e.g. touching the same spot on the tablet always touches the 

same spot on the screen) and to avoid inadvertent right-clicks or zooms. Here we detail the 

instructions for a Wacom Bamboo tablet. 

 

http://r.yieldkit.com/v1/redirect?type=intext&adId=YIELDNET.2.1006531070333986637&adType=product&api_key=ec0405c882a14d54be2c78e3a51df258&site_id=519b222ce4b0ba3cc21606b6&criterionId=nsf.gov+-+National+Science+Foundation+%28NSF%29+News+-+An+ACE+for+Visually+Impaired+Students+in+Computer+Science+-+US+National+Science+Foundation+%28NSF%29+Research+Areas+Learning+Resources+Funding+&criterionId=students&source=http%3A%2F%2Fwww.nsf.gov%2Fnews%2Fnews_summ.jsp%3Fcntn_id%3D112729
http://r.yieldkit.com/v1/redirect?type=intext&adId=YIELDNET.2.1006531070333986637&adType=product&api_key=ec0405c882a14d54be2c78e3a51df258&site_id=519b222ce4b0ba3cc21606b6&criterionId=nsf.gov+-+National+Science+Foundation+%28NSF%29+News+-+An+ACE+for+Visually+Impaired+Students+in+Computer+Science+-+US+National+Science+Foundation+%28NSF%29+Research+Areas+Learning+Resources+Funding+&criterionId=students&source=http%3A%2F%2Fwww.nsf.gov%2Fnews%2Fnews_summ.jsp%3Fcntn_id%3D112729
http://www.cs.umd.edu/hcil/audiomap/


If the tablet is not sensitive over the entire tablet area use something tactile to mark off the 

boundaries of the sensitive area so the students know where the edges and corners of the 

sensitive area/screen are. Wikkistix can be attached and removed easily. The following is a 

guided tutorial for students to familiarize themselves with the tool, learn how sonification can 

display data, and at the end use the tool to find information about the United States. Advise the 

students to not use the help menu on F1 (it doesn’t seem to work correctly), but to feel free to use 

F10 to browse the menu and check out the different commands and shortcuts. 

 

Activity 2:  Preparation of Peanut butter Jelly sandwich 

 

In this activity we have the students give instructions to the mentors to prepare a peanut butter 

Jelly Sandwich.  The students assume that the mentors are like computers or robots and the 

mentors are supposed to act as if they were robots or computers doing exactly what they student 

instructs. This activity helps the students understand all the details that a programmer have to 

keep in mind when programming.  

 

Activity 3: Act out Turing Test 

 

The AI debate hinges on a definition of intelligence. Many definitions have been proposed and 

debated. An interesting approach to establishing intelligence was proposed in the late 1940s by 

Alan Turing, an eminent British mathematician, wartime counterspy and long-distance runner, as 

a kind of ―thought experiment.‖ Turing’s approach was operational—rather than define 

intelligence, he described a situation in which a computer could demonstrate it. His scenario was 

similar to the activity described above, the essence being to have an interrogator interacting with 

both a person and a computer through a teletypewriter link (the very latest in 1940s technology!) 

If the interrogator could not reliably distinguish one from the other, the computer would have 

passed Turing’s test for intelligence.  

 

For this Activity, we have two of the mentors to hide in a certain room. One represents a human 

and the other one a robot. The Students give questions to these mentors to answers. The 

questions are about random topics. After the mentors gave their answer the students have to 

guess which one is machine and which one is human. 

 

The questions are 

 

1. What is the name of Bart Simpson’s baby sister? 

2. What do you think of Roald Dahl? 

3. Are you a computer? 

4. What is the next number in the sequence 3, 6, 9, 12, 15? 

5. What do you think of nuclear weapons? 

6. What is 2 × 78? 

7. What is the square root of two? 

8. Add 34957 to 70764. 

9. Do you like school? 

10. Do you like dancing? 

11. What day is it today? 



12. What time is it? 

13. How many days are there in February in a leap year? 

14. How many days are there in a week? 

15. For which country is the flag a red circle on a white background? 

16. Do you like to read books? 

17. What food do you like to eat? 

 

Activity 4: Candy bar Activity 

 

Divide the students into groups of 2 or 3. Give each group a candy bar. 

Explain that their task is to determine how many "breaks" it will take to break the candy bar into 

12 equal pieces. One break of one piece of the candy bar will result in that one piece being 

divided into two pieces. Demonstrate a "break" by breaking the bar into two pieces. Every time a 

piece of chocolate is broken, that counts as a separate break- even if you stacked the pieces 

together. 

At this point, have each student write in their journal the number of breaks they think it will take 

to break the bar into 12 equal pieces. This should be done without talking to their partner or 

group members. 

Working together with their partner or group, have the students discuss and then write their plan 

for solving the problem. They may revise their guess at this point. 

Once this is completed, the students should implement the plan by opening the candy, breaking 

the candy, and counting the number of breaks it takes to get 12 equal pieces. 

 

The purpose of this activity is to introduce the students to the concept of Sorting Algorithms.  

 

Activity 5:  Handshake activity 

 

Students follow the next instructions: 

 

Handshake Problem: Assume there are 20 people in a room, including you. You must shake 

hands with everyone else in the room. How many hands will you shake? If there are N (where N 

> 0) people in the room, how many hands will you shake? 

 

Have the people line up in the room. The first person in the line walks down the line and shakes 

hands with all of the people in the line and then leaves the room. Count the number of 

handshakes and add to the total (Have students count off). 

The next person in line walks down the line and shakes hands with all of the people left in the 

line and then leaves the room. Count the number of handshakes and add to the total. This 

continues until there are only 2 people left. They shake hands and leave together. Increase the 

total by one. 

 

Once the answer is known for 10 people, look for a pattern. Try the process for 5 people, 2 

people. See if the pattern holds. 

 

Carry out the plan: Using your plan, show your work and your solution. 

 



Now add up the number of handshakes: 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 45 

 

The purpose of this activity is to teach the students the concept of Summation which is used a lot 

in computer science. 

 

Activity 6: Towers of Hanoi Puzzle 

 

We gave the students a brief description of what the towers of hanoi puzzles is like: 

An old legend tells of a Hindu temple where the pyramid puzzle might have been used for the 

mental discipline of young priests.  The legend says that at the beginning of time, the priests in 

the temple were given a stack of 64 gold disks, each one a little smaller than the one beneath 

it.  Their assignment was to transfer the 64 disks from one of three poles to another, with one 

important rule:  a large disk can never be placed on top of a smaller one. The priests worked very 

efficiently, day and night.  When they finished their work, the myth said, the temple would 

crumble into dust, and the world would vanish. 

In 1883, Edouard Lucas, a French mathematician, invented a game called the Tower of Hanoi 

(sometimes referred to as the Tower of Brahma or the End of the World Puzzle). The game 

begins with a number, for example of 3 discs, arranged on one of three poles. Each disc is 

smaller than the disc below it.  The object is to move all the discs from the starting tower to one 

of the remaining towers.  Only one disc can be moved at a time, and a larger disc can never be 

placed on top of a smaller one.  Use the lowest number of possible moves. 

 

The following table records the minimum number of moves required for the number of original 

discs. 

 

Number of Discs Number of Movements 

3 7 

4 15 

5 30 

 

This lesson reinforces the four main phases in the problem-solving process. 

Objectives: The students will be able to: 

Solve a problem by applying the problem-solving process. 

Express a solution using standard design tools. 

Determine if a given solution successfully solves a stated problem. 

Student Activities: 

Work individually to learn the history and rules of the Towers of Hanoi puzzle. 

Discuss how long this puzzle might take to complete for different sizes 

Work with elbow partner to complete the activity. 

Discuss solutions. 

 



 

 

Activity 7: Unplugged Counting in Binary  

 

This lesson introduces the binary number system and how to count in binary. Students will learn 

how to convert between binary and decimal numbers in the context of topics that are important to 

computer science. 

Objectives: 

The students will be able to: 

Count forward and backward in binary. 

Explain why binary numbers are important in computer science. 

Use binary digits to encode and decode messages.  

 

Worksheet Activity: Working With Binary  The binary system uses zero and one to represent 

whether a card is face up or not. 0 shows that a card is hidden, and 1 means that you can see the 

dots.    

For example: 010001 = 9  Can you work out what 10101 is? What about 11111?  What day of 

the month were you born? Write it in binary.    

Find out what another student’s birthday is in binary.   

Using the symbol key document and the symbol cards that you were given, determine what the 

values are. You will also need to use the morse code sound files on a computer.  Extra for 

Experts: Or you could surprise an adult and show them how they only need a balance scale and a 

few weights to be able to weigh those heavy things like suitcases or boxes! 

 

Using a set of rods of length 1, 2, 4, 8 and 16 units show how you can make any length up to 31 

units. To do this activity , we build a paper with a grid drawn in it using wikkistix. 

 

 

 



 

 

 

Activity 8: Model Binary Search 

 

For this activity we use two identical, *sorted*, and *large* stacks of index cards with words in 

braille and writing. Give one stack to a pair of two students and ask them to pick any word, 

keeping it in order. 

Choose another pair of students to count how many times you pick a word from the stack to try 

and find their word. 

Start by using a linear search. It should not take long for students to suggest that this is not a 

good strategy. Ask them to provide a better strategy. 

Guide them to binary search. 

Discuss the number of guesses required and how this is similar to the tower building problem. 

Comparison of linear and binary search. 

Linear—start at the beginning, look at each item until you find it or there is no more data. Data 

can be sorted or not. 

Binary—look at middle item, eliminate the half where the value is not located. Find the new 

middle element and continue the process until you find it, or there is no more data. Ask students 

to describe what is necessary in order to use a binary search—the list must be sorted. 

 

Have students provide examples of where each type of search is appropriate and why. 

 

Activity 9: CS unplugged: Lightest & Heaviest (explore sorting) 

 

Instructions for the students to follow: 

 

Aim: To find the best method of sorting a group of unknown weights into order.  You will need: 

Candy , 8 identical containers, a set of balance scales.  What to do:  

Fill each container with a different amount of Candy. Seal tightly.   

Mix them up so that you no longer know the order of the weights.   

Find the lightest weight. What is the easiest way of doing this? Note: You are only allowed to 

use the scales to find out how heavy each container is. Only two weights can be compared at a 

time.   

Choose 3 weights at random and sort them into order from lightest to heaviest using only the 

scales. How did you do this? What is the minimum number of comparisons you can make? 

Why?   

Now sort all of the objects into order from lightest to heaviest.   

When you think you have finished, check your ordering by re- weighing each pair of objects 

standing together.   

Selection Sort One method a computer might use is called selection sort. This is how selection 

sort works. First find the lightest weight in the set and put it to one side. Next, find the lightest of 

the weights that are left, and remove it. Repeat this until all the weights have been removed. 

Count how many comparisons you made.  Extra for Experts: Show how you can calculate 



mathematically how many comparisons you need to make to sort 8 objects into order. What 

about 9 objects? 20? 

 

 

 

Activity 10: Minimum Spanning Tree 

 

Sometimes a small, seemingly insignificant, variation in the specification of a problem makes a 

huge difference in how hard it is to solve. This activity is about finding short paths through 

networks. Here we are allowed to introduce new points into the network if that reduces the path 

length.  

 

The goal is for students to be actively involved in some way and for all students to be able to 

describe shortest path strategies. What follows is the minimal suggestion. 

 

For visually impaired students we use a tactile graph on paper that allows graph information to 

be read in printed text and braille as well as providing information through touch by using 

wikkistix. A sample is included below. The ―houses‖ or cities are represented as circles/spirals 

with their names written in print and braille next to them. Edges between cities are straight lines 

made of wikkistix. Their weights are represented by the number of bars going across them, by a 

printed number, and a braille number near the bars. 

 

 



 

 

 

Activity 11: Steiner Tree activity 

 

Steiner trees are much harder because you have to decide where to put the extra points. In fact, 

rather surprisingly, the difficult part of the Steiner tree problem is not in determining the precise 

location of the Steiner points, but in deciding roughly where to put them. Soap films do that very 

effectively, and so can computers. Surprisingly, finding minimal Steiner trees can save big bucks 

in the telephone business. 

 

The networks that we’ve been talking about are minimal Steiner trees. They’re called ―trees‖ 

because they have no cycles, just as the branches on a real tree grow apart but do not (normally) 

rejoin and grow together again. They’re called ―Steiner‖ trees because new points, Steiner points, 

can be added to the original sites that the trees connect. And they’re called ―minimal‖ because 

they have the shortest length of any tree connecting those sites. It’s interesting that while there is 

a very efficient algorithm for finding minimal spanning trees  a greedy one that works by 

repeatedly connecting the two closest so- far-unconnected points—there is no general efficient 

solution to the minimal Steiner problem. 

 

Another interesting activity is to construct soap-bubble models of Steiner trees. You can do this 

by taking two sheets of rigid transparent plastic and inserting pins between them to represent the 

sites to be spanned. Now dip the whole thing into a soap solution. When it comes out, you will 



find that a film of soap connects the pins in a beautiful Steiner-tree network.

 
 

In this activity the students will use chairs to represent the different pins and a string to connect 

them, they use scissors to use as much string as they thought they needed to find a solution.  

 

Simulations and Experimental Setup and Results 

 

Activity 12:  Walk like a Robot  

 

Instructions: 

Choose one student to be a ―robot‖ or tell students that you will be the robot. Choose a starting 

point and an ending point between which the ―robot‖ must navigate. Make sure the path is not 

direct. 

Tell the class that they must direct the robot from the starting point to the ending point using only 

five commands: 

 Turn left 90 deg. 

 Turn right 90 deg. 

 Take a step forward with the left foot. 

 Take a step forward with the right foot. 

 Stop. 

Students can take turns or work as a group. The robot should only follow those five commands 

and not respond to other commands. Tell students to be careful with the robot and not walk it 

into walls or barriers. (The robot should stop before it hits a barrier such as a wall). 

At some point, remind students about loops. They can tell the robot to repeat a command or a 

block of commands such as ―repeat: take a step forward with the left foot, take a step forward 

with the right foot until you are at the wall‖ 



Point out that this is frequently what is done in dancing and choreography—sequences of steps 

are repeated. 

Activity 13: Programming of NXT Robots 

 

 Introduce the features of the JBrick Mindstorms NXT Software 

 The students will be able to Recognize the parts of the Mindstorms NXT software. 

 Explain the different types of icons in the common palette and how to use them. 

 Explain the different types of icons in the complete palette and how to use them. 

 Recognize the parts of the JBrick software. 

 Explain the difference between software errors and hardware errors. 

 Explain the difference between logical errors and syntax errors. 

 Interface: the parts of the JBrick Mindstorms NXT software  

 Follow Project Zero document. 

 A simple program from the complete palette  

 Student Activities: 

 Discuss how the programs were created in the NXT brick and how they behaved 

compared to expectations. 

 Listen to explanation of Mindstorms NXT software and respond to questions. 

 Give ideas to teacher as s/he writes small programs in the software. 

 Learn how to use JBrick Software 

 Begin the Project Zero activities. 

 Teaching/Learning Strategies: 

 Ask students what they programmed the robot to do. Get several answers. Did it do what 

they expected? Why or why not? Would it be a good idea to use the JBrick NXT Program 

interface to write all their programs? Why not? (It can only take 5 commands in a 

program.) 

 Projecting the teacher’s screen, launch the Mindstorms NXT JBrick software. Show the 

students where the tutorials are in the Robot Educator section and how to open a new 

program. Describe all parts of the interface.  

 With student input, use the common palette to build a small program. Ideally, use a 

variety of the blocks of the common palette, explaining what each one does as you use it. 

For example, if you wanted to build a program that told the robot to wait until the touch 

sensor was touched, then move forward for one rotation then listen and if a loud sound 

occurs, then display a smiley face and play a sound otherwise move forward, it would 

look like this: 

 With student input, build a small program. Ideally, you should use several different 

features of the NXT system such as using the different sensors and motors, as well as 

producing audio. 

 Save the program and download it to an NXT brick. Make sure the brick is set up to do 

the actions—have one built with the driving base and any necessary sensors. Demonstrate 

the running of the program. 

 Modify the program and download it again. Try to make mistakes during this period and 

show how to debug the program by frequently testing it, downloading extra blocks, and 

also making mistakes such as having disconnected blocks. During this part have students 

try to work with the software themselves and follow along with you. 



 Open a new program and switch to the complete palette. Show the differences in the two 

palettes. With student input, write a new program using the blocks of the complete 

palette. Show the differences in controlling the program. Make sure to show how to wire 

things in the data hub. For example, a program that runs the motors for a random amount 

of time would look like this: 

 Make sure to make mistakes and demonstrate how to solve problems with the software 

such as mis-wiring ports. Have students try these features at their seats as you do it. Point 

out the similarities between programming the NXT software and what they did in the last 

unit with Scratch. 

 

Project Zero 

 

For the following activities, in each of the codes the students use two libraries: 

MotorUtilities.NXC and SensorUtilities.NXC which were created to help the students understand 

better the functions commonly used in the language of nxc. In these libraries  most of the basic 

functions defined in the language of NXC are redefined with a different name which is 

considered easier for the students to understand. 

 

Instructions for the students: 

 

The requirements for the activity models and programming are the following for each team: 

 1 Lego Mindstorms Education kit 

 1 Lego Education kit 

 JBrick (http://code.google.com/p/jbrick/) 

 NXT firmware installed, version 1.05 or later (http://mindstorms.lego.com/en-

us/support/files/Firmware.aspx) 

 Project Zero Student Activity write-up 

 Student Cheat sheet 

 Materials for challenges 

 

To run this activity, the following Lego model components should be built for or by each team: 

 2-Motor Base.lxf 

 2-Wheel Caster.lxf 

 Sensor Chassis – Arm.lxf 

 Sensor Chassis – Front.lxf 

These will be combined into the following models for each activity: 

 Activity Base.lxf 

 Straight Model.lxf 

 2  Basic Activity Notes 

 

The edit, compile, download and run sequence is repeated each time a programming change is 

made. The students will pick this up fairly quickly, but you will need to walk them through it the 

first few times. Common errors and things to be aware of: 

 



 Make sure the student is saving their work (i.e. MotorActivity1-1.nxc) back into the 

Project Zero folder where they opened MotorActivity.nxc and are using the NXC (*.nxc) 

―Save as type‖ option in the Save Current File dialog. 

 The USB cable not being attached when attempting a download 

 The USB cable is attached, but the NXT brick is not connected (Tools->Find Brick) File 

is not being saved with an *.nxc extension (Save as type) 

 

The Download command automatically saves and compiles the program before downloading 

A downloaded program of the same name replaces an existing program on the brick. Repeat the 

download prior to debugging a program to make sure the BricxCC program and NXT program 

are in synch. 

 

Challenge Activities 

 

Below are solutions to the different challenges that the students will get to accomplish. With 

each solution are tips on how to help the students if they get stuck, what common problems 

students may face, and what mistakes may occur in student implementations. 

These are by no means the exact solutions that students should achieve, as there are many ways 

to accomplish each activity. 

 

Challenge #1 - Bump'n Turn 

 

Objective: To create a robot that will move forward until it runs into something. It will then back 

up and turn, then continue moving forward. 

Setup: This robot uses the same chassis that you've been using throughout the activity. On the 

front of it is the touch sensor. You may want to stick an axle with a gear on the end into the 

sensor to provide a larger touch area. You will use this touch sensor to determine when the robot 

has run into something. 

 

Bump'n Turn Solution 

 

/* BumpnTurn.nxc */ 

// Include utilities for motors and sensors 

#include "MotorUtilities.nxc" 

#include "SensorUtilities.nxc" 

// The entry point for your program 

task main() 

{ 

  // Configure the touch sensor 

  ConfigSensor(S1, SENSOR_TYPE_TOUCH, SENSOR_MODE_BOOL); 

  

  // Initialize variables for storing sensor values 

  bool sensorValue = false; 

  

  // In a continuous loop 

  while(true) 



  { 

     // Read sensor values 

     sensorValue = CheckSensor(S1); 

      

     // If we touch something, move backwards and turn 

     if(sensorValue) 

     { 

        // Coast 

        Off(MOTOR_AC); 

      

        // Go backwards 

        RotateMotors(MOTOR_AC, 60, 90); 

         

        // Turn 90 degrees 

        RotateMotors(MOTOR_AC, 60, 180, -100); 

         

        // Clear the outputs 

        Coast(MOTOR_AC); 

         

        // Clear the value 

        sensorValue = false; 

     } 

      

     // Move forward 

     MotorsForward(MOTOR_AC, -75); 

  } 

} 

The primary problem areas that come up are as follows: 

 Not recognizing the need to check the sensors value continuously in the loop. 

 Not Coasting or Offing the motors when changing from going forwards to reverse, 

rotating, or the like. 

 For solutions that turn using MotorsForward or MotorsReverse, not calling Wait to make 

sure the motors get a chance to move for a designated period of time or distance. 

 Configuring the Touch Sensor in any mode other than SENSOR_MODE_BOOL can 

result in it being difficult accurately tell when the sensor is pressed in or not. 

 

Challenge #2 - Avoidance 

 

Objective: Program the NXT robot to move forward and turn when it comes close to an object. 

Setup: You will be using the same robot from the previous activity. Simply replace the touch 

sensor with an ultrasonic sensor. 

Open the file Avoidance.nxc. It contains an outline of the program you will complete by 

following the hints given in the commented areas. 

 

 

 



Avoidance Solution 

 

/* Avoidance.nxc */ 

// Include utilities for motors and sensors 

#include "MotorUtilities.nxc" 

#include "SensorUtilities.nxc" 

// Any defines you need 

#define THRESHOLD 50 

// Main task 

task main() 

{ 

  // Configure the ultrasonic sensor 

  ConfigSensor(S1, SENSOR_TYPE_LOWSPEED_9V, SENSOR_MODE_RAW); 

  

  // Initialize variables for storing sensor values 

  int ultraValue = 255; 

  int turnRatio = 0; 

  

  // In a continuous loop 

  while(true) 

  { 

     // Read sensor values 

     ultraValue = CheckSensor(S1); 

      

     // If we see something, turn until we don't anymore 

     if(ultraValue <= THRESHOLD) 

     { 

        // Halt 

        Off(MOTOR_AC); 

         

        // Turn 

        RotateMotors(MOTOR_AC, -75, 23, 100); 

         

        // Clear the motors 

        Coast(MOTOR_AC); 

     } 

     // Otherwise, move forward 

     else 

     { 

        // Go forward 

        MotorsForward(MOTOR_AC, -75); 

     } 

  } 

} 

Common problem areas: 

 Not recognizing the need to check the sensors value continuously in the loop. 



 Not Coasting or Offing the motors when changing from going forwards to reverse, 

rotating, or the like. 

 For solutions that turn using MotorsForward or MotorsReverse, not calling Wait to make 

sure the motors get a chance to move for a designated period of time or distance. 

 Configuring the Ultrasonic Sensor in any mode other than SENSOR_MODE_RAW can 

result in it being difficult to ascertain the real distance between the sensor and an object. 

 Having the motors always try to move forwards in the loop unconditionally. Unlike the 

previous challenge, this is necessary to insure that the robot does not run into anything. 

Otherwise, the robot will lurch forward followed by braking and turning, which will wear 

on the motors and drain battery power quickly. 

 Having either too large or small a THRESHOLD value can make it hard for the robot to 

behave correctly. The ultrasonic sensor can detect accurately from 10cm to around 

100cm out. Anything outside those boundaries can become problematic. 

 

Challenge #3 - Going the Distance 

 

Objective: Program the NXT robot to move forward towards an object from a fixed starting 

point. Use the movement of the robot to measure the distance between the starting point and the 

object, while insuring that that robot stops when it reaches the object. 

Setup: You will be using the same robot from the Bump'n Turn activity. Furthermore, to check 

the distance, you will need to know the circumference of your wheels. You will be given some 

code for special functions that you will need to use, provided below. 

 

Going the Distance Solution 

 

/* GoingTheDistance.nxc */ 

// Include utilities for motors and sensors 

#include "MotorUtilities.nxc" 

#include "SensorUtilities.nxc" 

// Any defines you need 

// Entry point to your program 

task main() 

{ 

  // Reset the rotation counters on the motors 

  ResetRotationCount(MOTOR_AC); 

  

  // Configure the sensors 

  ConfigSensor(S1, SENSOR_TYPE_TOUCH, 

                   SENSOR_MODE_BOOL); 

                    

  // Declare variables for the sensors and motors 

  bool touchValue = false; 

  int numRotations = 0; 

  int rotationCount = 0; 

  

  // In a continuous loop 



  while(true) 

  { 

     // Get the current rotation count 

     rotationCount = -MotorRotationCount(OUT_A); 

      

     // Read the sensor values 

     touchValue = CheckSensor(S1); 

      

     // If we've gone a new rotation 

     if(rotationCount >= 360) 

     { 

        // Increment the number of rotations 

        numRotations++; 

        

        // Reset the rotation count 

        ResetRotationCount(OUT_AC); 

        // Play a tone 

        PlayTone(100, 500); 

     } 

      

     // If the touch sensor is hitting something 

     if(touchValue) 

     { 

        // Stop the motors 

        Off(MOTOR_AC); 

         

        // Break out of the loop 

        break; 

     } 

      

     // Otherwise, move forward 

     MotorsForward(MOTOR_AC, -50); 

  } 

} 

 

Dancing Robot 
 

In this activity, students work in pair to program a robot to dance or move  according to a music 

of their choice. For this activity and the rest of the robotics activities they use the libraries from 

project zero. 

 

Follow the line and hit the ball 

 

In this activity, students work in pair to program a robot to follow a black straight line over a 

white surface using two light sensors. After the robot reaches the end of the line make the robot 



hit a small plastic ball . For this activity the students have to design the robot so that it hit the ball 

as if it were holding a baseball bat. They also use the project zero libraries.  

 

Simulations and Experimental Setup and Results 

 

The first thing that we did was to format and adapt the Inclusive Exploring computer science 

curriculum so that the activities in it are accessible to the visually impaired. The lab was 

equipped just with I-Macs, therefore we had to partition the computers to use windows and mac 

because there are some softwares like JAWS, iSonic and Jbrick that were only runnable on 

windows. 

 

We had to download each of these softwares and install them in each computer.  We had to 

download their drivers to make them run. 

 

Later we built each of the robots that the students used and disassembled them. We stored the 

disassembled robots in different bags to make it easier for the students to reassemble them. We 

also simulated each of the activities the students had to perform with the robots. 

 

Setup 

 

We organized each of the activities from the curriculum by unit. Then we organized the student 

files and put them in each of the computers the students were going to use along with the 

softwares. We organized all the physical material that they used by units (eg. towers of Hanoi, 

Minimal Spanning tree map, Binary code cards etc..). We move all the computers to another lab 

in which they did the first half of all the activities; they had more space in this lab.  

 

The I-Macs that we used have the following characteristics: 

 

 2.7 GHz quad-core Intel Core i5 processor (Turbo Boost up to 3.2GHz) with 6MB L3 

cache 

 1 TB (5400-rpm) hard drive, 8 GB (two 4GB) of 1600MHz DDR3 memory 

 21.5-inch (diagonal) LED-backlit display with IPS technology; 1920-by-1080 resolution 

 NVIDIA GeForce GT 640M graphics processor with 512MB of GDDR5 memory 

 Mac OS X Mountain Lion 

 

Results 

 

Activity 1: Introduction to iSonic and Sonification. 

 

The students learned how to use the software iSonic. They learned the different ways in which 

they can get information about the states using the program. They learned specific information 

about the amount of people that lives in each state that are visually impaired. They also learned 

how sort the information in the program to find out what state has the highest amount of visually 

impaired people by age and other different classifications. The only issue about this software is 

that it can only be used in the Windows operating system.  

http://www.amazon.com/Apple-MD093LL-21-5-Inch-Desktop-VERSION/dp/B004YLCFCM/ref=sr_1_1?ie=UTF8&qid=1374703008&sr=8-1&keywords=imac


 

Activity 2:  Preparation of Peanut butter Jelly sandwich 

 

In this activity, since the students didn’t have much experience in programming, they didn’t do 

very well. When writing the instructions they didn’t take into account many details that a 

computer has known about before executing. For example  most of them didn’t as for the peanut 

butter jar to be open before spreading it over the bread. 

 

Activity 3: Act out Turing Test 

 

In this activity, they did pretty well.  They were able to Identify very quickly which one was the 

robot. 

 

Activity 4: Candy Bar Activity 

 

At the beginning they did pretty bad. They had no Idea of how to start. With the guidance of the 

mentors they all were able to think of  good algorithm to solve to problem. However each of 

their algorithms were different. 

 

Activity 5:  Handshake activity 

 

They did pretty good, it was very easy for them. We later explained to them what was the 

concept behind it and they understood immediately. 

 

Activity 6: Towers of Hanoi 

 

Since this activity starts with a low amount of disks, they were able to learn the algorithms pretty 

quiclky and solve the problems fast enough. 

 

Activity 7: Unplugged Counting in Binary  

 

The students did pretty good. They all learned how to count in binary very quickly. 

 

 

Activity 8: Model Binary Search 

 

At the beginning they didn’t understand what the concept in this activity was. After we explained 

to them the concept of binary search, they were able to do the activity a lot quicker because they 

understood the concept. 

 

 

 

 



Activity 9: CS unplugged: Lightest & Heaviest (explore sorting) 

 

In this activity, they started very well using the binary search concept. Later we introduced them 

to the different sorting concepts which they also used to solve the problem and understood very 

well. 

 

Activity 10: Minimum Spanning Tree 

 

They did very  well, they found the optimal solution pretty fast. 

 

Activity 11: Steiner Tree activity 

 

They didn’t do very well at the beginning because the had never learned the concept before. 

After we explained to them the concepts and techniques that had to be applied in this activity 

they did much better. 

 

Activity 12:  Walk like a Robot  

 

They didn’t do well in this activity because it took them more than five commands. It seems that 

for this activity they didn’t read well the instructions. The students didn’t take into consideration 

things like obstacles or necessary steps. 

 

Activity 13: Programming of NXT Robots 

 

Dancing Robot 
 

In this activity the students didn’t do very well at the beginning because they didn’t know how to 

adjust the depth of the sound sensor. For example sometime the robot would move with the 

sound of its own motors. Due to this, they stopped using the sound sensor and simply tried to 

make robot move according to the sound of music and its timing. 

 

Follow the line and hit the ball 
 

In this activity at the beginning they did pretty bad. Later on, just one of them was able to 

complete the task very well. The same student was the only one  able to make the robot follow a 

curved black line. Later the rest of the students were able to make the robot follow the line in a 

straight line. Finally, they did pretty good in having the robot hit the ball at the end of the line. 

 

Conclusion 
 

In conclusion, we can say that in most of the activities the students did very well. This project 

helped the students learned very well some of the most important concepts in computer 



science.  They only part in which they had issues was in programming which as usual is the most 

difficult area in the field of computer science. 

 

 

 

 

Bibliography 
 

[1] Questions and Answers About Blindness and Vision Impairments in the Workplace and the 

Americans with Disabilities Act. http://www.eeoc.gov/facts/blindness.html 

[2] An ACE for Visually Impaired Students in Computer Science. 

http://www.nsf.gov/news/news_summ.jsp?cntn_id=112729 

 

http://www.exploringcs.org/curriculum 

 

http://www.eeoc.gov/facts/blindness.html
http://www.nsf.gov/news/news_summ.jsp?cntn_id=112729

