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ABSTRACT
American Sign Language, the preferred language of the Deaf community in the USA is its own

language; complete with a rich collection of grammatical features. The DePaul  University  team has
been working on an automatic English/ASL translator implemented as a 3D avatar in order to facilitate
better  communication  between  hearing  and  deaf  people.  Animations  suffered  from various  timing
inconsistencies  and  were awkward  in  appearance.  This  project  attempts  to  address  them by using
corpus analysis to discern subtle features of ASL in order to improve the coarticulation model in the
avatar.

1. INTRODUCTION
American  Sign  Language  (ASL),  the  preferred  language  for
members of the Deaf community in the United States of America,
uses hand and body movement combined with facial expressions
in  order  to  communicate.  ASL is  its  own  distinct  language,
neither a gestural expression of English nor a derivative [1].

Due  to  the  differences  between  ASL  and  English,  a
communication  barrier  has  always  existed  between  deaf  and
hearing communities even for short, spontaneous interactions. In
order to facilitate communication and to overcome this barrier,
the  ASL research  project at  DePaul  University  [2]  has  been
developing an automatic English to ASL translator named Paula
that  is  displayed  as  a  3D  avatar.  A sample  output  of  Paula
interpreting  a  phrase  is  shown  (Figure  1).  Creating  believable
animations  that  are  natural  in  appearance  requires  access  to
corpus data.

Figure 1. Paula from the demo website.

The team obtained a copy of the corpus published by the ASL
Linguistic Research Project at Boston University [3]. The corpus
data consists of videos and manually-encoded annotations that are
synchronized with the video.  Common annotations include the

manual glosses (English equivalent of an ASL sign), nonmanual
signals, and an English translation.

Originally,  the corpus was in the SignStream format [4],  but a
custom software package  constructed on a SignStream API [5]
converted it to ELAN's XML-based format [6] to take advantage
of  the  better  user interface  and  search  capabilities  offered  by
ELAN.

ELAN  is  the  “Eudico  Linguistic  ANnotator”,  an  open-source
program created by the “EUropean DIstributed COrpora” project
[7].  ELAN is  widely  used  in  linguistic  studies  as  the  tool  of
choice  to  annotate  media  clips  containing  utterances  of  the
language under study. A graphical interface enables linguists to
view the clips and annotate them at the same time, speeding up
productivity. An example of the GUI is provided in (Figure  2).
The annotations are organized under specific tiers that the user
can define or import as part of a template. Present in the tiers are
annotations arranged with respect to time.  The annotated corpus
with  ELAN contained  a  wealth  of  information  that  the  team
wanted to analyze.

Figure 2. Example of the ELAN GUI.



2. STUDYING COARTICULATION
What the team desired was to better understand the relationship
between  glosses  in  the  corpus  to  further  their  research  on
coarticulating signs.  Coarticulation is  the manner  in  which the
characteristics of signs performed in sequence are modified by
the  preceding  and  succeeding signs.  In  ASL  signs  are
characterized  by  their  location,  orientation,  handshape,
movement, and nonmanual signals [8].

In  a  signing  avatar,  modeling  coarticulation  and  automatically
incorporating it into generated utterances of ASL is necessary to
create realistic movement.  Without coarticulation the transitions
between signs tend to be stiff and awkward. By incorporating a
model of coarticulation we hope to improve the acceptability of
the animation, and possibly the clarity of the communication. To
achieve this  goal,  the avatar needed a database of coarticulated
signs in order to fine-tune its timing.

3. EXISTING TOOLS
ELAN  contains the ability to generate some useful statistics on
the corpus as a whole via the “Annotation Statistics for Multiple
Files” command. An example of what it looks like is provided in
(Figure 3). It was able to collate information on the glosses over
the corpus and provide some descriptive statistics like the mean
and median duration.

Figure 3. ELAN Annotation Statistics for Multiple Files.

One useful tool the team already had was the ability to generate
histograms of a gloss' length  [9]. A sample histogram is shown
(Figure 4).

Figure 4. Histogram of the gloss HOUSE with the x-axis
representing duration in milliseconds and the y-axis

representing occurrences in the corpus.

Other tools outside the realm of ELAN exist to analyze corpus in
varying annotation formats are available. Some of them are: iLex
[10],  Anvil [11],  SignStream [4], and ATLAS [12].  All of them
are well-utilized software with the ability to analyze corpus files.
However answering questions regarding coarticulation  created a
challenge.  Existing  tools  was  sufficient  to  study  individual
glosses in the entire corpus and  the information  assisted in the
team's effort to normalize the signs being produced in the avatar.
A new approach was required to go further than analyzing just the
gloss.

4. CORPUS ANALYSIS APPROACHES
It was necessary to develop alternative tools for this purpose and
existing  corpus  analysis  literature  outlined  several  approaches
that were possible.  Most of the published papers focused solely
on text-based analysis and did not address sign language corpus.
Others made superficial analyses and only used the data to drive
their avatar models which the team already incorporated in Paula.

One  popular  approach  was  to  focus  on  the  frequencies  of
individual glosses  and discover correlations in parallel corpora.
An extensive study was done by Johnston [13] that addressed this
method.  Other authors have done the same thing to  corpora in
different languages and their papers outlined methods similar to
what  Johnston  employed.  However,  gloss  frequencies  revealed
very  little  on  coarticulation  behaviors  and  were similar  to  the
histograms the team already generated.

Other authors have preferred to use a completely different system
to annotating sign languages: SiGML [14] and HamNoSys [15].
The software associated with their systems can  execute corpus
analyses similar to those available in ELAN. However, this would
require writing an additional conversion package, so it was better
to develop software that was usable on the existing ELAN-based
corpus.

In related work on machine translation, Zhao et al. [16] broke the
corpus  down  into  parse  trees.  It  was  then  possible  to  discern
relationships  in  the  corpus  data.  However,  like  many  other
authors who worked on machine translation it was mostly focused
on analyzing the English corpus, not the ASL corpus.

Extensive  studies  have  been  conducted worldwide  on  sign
language  recognition  systems  which  employed  automatic
machine identification algorithms.  That approach was surveyed
by Ong & Ranganath [17] and showed that there was still a lot of
work  to  be  done in  order  to  achieve  satisfactory  performance.
Delving  into  the  different  systems  gave  us  insights  on  what
algorithms were used. However, most of them are related to video
recognition and contained no algorithms we could use to analyze
our corpus.

As a survey of the literature showed, there existed very few tools
that were able to analyze the ELAN-based ASL corpus to provide
sufficient detail  to develop new coarticulation models.  The task
fell on the team to  utilize a previously unexplored approach to
corpus analysis.

5. DISCOVERING N-GRAMS
The concept of bigrams is often used to support Markov models
[18] or associated models for prediction and machine translation.
Immediately the team realized that bigrams  would be useful for
discovering insights into patterns in coarticulation.



One  influential  paper  in  linguistic  analysis  related  to  bigrams
described work by Dunning [19]. It is an approach not utilized in
sign language  studies and from there we became aware of how
powerful contingency tables were in processing corpora.  It was
possible  to  extract  voluminous  amounts  of  data  from a  single
table as Pecina [20] showed in the survey of collocation methods.
The  list  is  shown  in  (Appendix  1)  and  contains  84  different
formulas. The team was now prepared to apply N-gram analytics
on the ELAN corpus. However,  with a  huge list of methods it
dawned  on  us  that  we  had  to  find  relevant  formulas  for  our
research.

6. NGRAM STATISTICS PACKAGE
A resource that proved immensely valuable in this regard was the
Ngram Statistics Package (NSP), a Perl program used to process
corpora for varying statistics  [21].  The  developers had carefully
chosen several algorithms and implemented them in the program.
It made our search scope much narrower as we just had to study
the  algorithms they  selected  and  understand  the  basis  of  their
applications.  The  NSP  contained  13  formulas  for  analyzing
bigrams and  we immediately saw the value of some of them in
answering our questions. Utilizing the precise formulas outlined
in  NSP,  it  was  now possible  to  directly  compare  corpora  and
immediately  see  the  differences.  Furthermore,  the  set  of  data
analysis tools would help us gain a better understanding of the
behaviors of coarticulation.

The next step was to understand the algorithms and to apply them
to  our  corpus.  We  set  out  to  implement  the  N-gram analytics
capabilities in ELAN. It was decided that augmenting ELAN was
the best course of action as we could publish the new features and
benefit  the sign language linguistics community with enhanced
capabilities. It was straightforward to study the code contained in
NSP and the relevant publications and port them over to ELAN's
Java codebase.

7. ELAN's N-GRAM ANALYTICS
Implementing  the N-gram capabilities  in  ELAN was relatively
easier than wading through the dense mathematical publications
outlining the contingency table algorithms. Fortunately, reviewing
literature  from  linguistic  authors  helped  us  understand  the
applications of the algorithms.  What follows is an outline of the
new  capability  in  ELAN  and  an  extensive  treatment  of  the
resulting  data.  It  is  the  aim  of  this  paper  to  serve  as  a
documentation of the  new  functionality  and  to  help  users
understand how to use the data.

The N-gram analysis can be reached through the “Multiple File
Processing”  submenu  through  the  File  menu.  From  there  the
“N-gram Analysis” method will be available to start the analysis.
A picture  showing  the  location  of  the  new  functionality  is  in
(Figure 5).

Figure 5. Location of the N-gram analysis in ELAN.

A new  dialog  window  will  pop  up  that  contains  the  various
options for the search and the resulting table showcasing a few
statistics. It looks like this (Figure 6).

Figure 6. Main N-gram analysis window.

The first  step is to select the search domain. It is the  standard
ELAN “Load domain” window where the user can then specify a
list of files or directories to search in. Once that is done a list of
tiers  seen  in  the domain will be shown (Figure  7).  A note  of
caution: the code assumes that all files in the domain will contain
the same tiers. It then loads the first file in the domain to extract
the tiers and display it in the window.



Figure 7. N-gram analysis window displaying possible tiers to
search on.

The next step is to then define the N-gram size in the textbox. The
software can handle any positive size greater than 1. However, the
powerful contingency table analysis can only be done on bigrams
and  will  not  be  done  on  unigrams  or  trigrams  and  bigger
N-grams.  Once that  is  defined clicking the “Update  Statistics”
button will start the search and depending on the machine, take a
while  to  calculate  the  statistics.  The  annotations  are  extracted
from the files, N-grams created from them, and finally collated
into groupings of same N-grams for statistical analysis.

When the search is done a report window will pop up displaying
some information. If there were errors during the search it will be
displayed in this window so it is important to double-check the
validity of the search. A sample report is seen in (Figure 8).

Figure 8. N-gram analysis report window.

When the search is done, the result table will be displayed in the
main window as shown in (Figure 9). Some of the columns from
the data are visible here, however only a small subset is displayed
simultaneously  to  avoid  overcrowding  the  GUI.  The  visible
columns are: N-gram, Occurrences, Average Duration, Minimal
Duration,  Maximal  Duration,  Average  Annotation  Time,  and
Average Interval Time.

Figure 9. The result of the N-gram analysis.

It is obvious that the displayed columns closely mirror the data
shown in ELAN's existing statistical output as shown in (Figure
3).  It  is  important  to  note  how the  N-grams  are  displayed  in
(Figure 9), and the first row contains the N-gram “HOLD|IX-1p”.
The vertical marker “|” separates the annotations contained in the
bigram.  For example,  if  a  trigram was selected it  would show
something  similar  to  “FINISH|READ|BOOK”  and  so  on  for
larger N-gram sizes.

Finally,  in order to see the entire  data  that  was produced it  is
necessary  to  export  the  results  into  a  text  file  for  further
processing. This is done by clicking on the “Save” button and a
dialog will pop up asking the user where to save the data. It is
exported in a CSV-like format (Comma-Separated Values). Based
on the existing statistics code in ELAN, the CSV file uses tabs
“\t” as the delimiters and newlines “\n” as the record separators to
avoid  ambiguity  with  the  values.  A  sample  row  is:
“HOLD|IX-1p\t7.9934\t0.348\t0.13754  ...”  and  contains
numerous columns. A full listing of a row for bigrams can be seen
in (Appendix 2).

It  is  then possible  to  import  that  data into the user's  preferred
spreadsheet program to further analyze the result. For example,
using Microsoft Excel  or LibreOffice Calc  it is possible to open
the  file  and  by  specifying  tabs  as  the  delimiter  then letting  it
import the data. There might be issues with the text qualifier as
the  N-gram could  contain  quotes  in  the corpora  so be  sure  to
watch out for that and disable it if necessary. The first few rows in
the file contain the parameters of the search as documentation of
the  search  query  that  generated  the  data.  The  names  of  the
columns appear after the header, followed by the rows of N-gram
data.  If the search was a bigram, there should be 69 columns of
information, 56 otherwise as N-grams other than bigrams will not
include contingency table metrics.  More metrics  are continually
added as the team discovers useful formulas so it could be more
than  the  published  number.  Please  consult  (Section  8) for  an
in-depth treatment of the exported statistical data.

Furthermore, it is possible to export the N-grams individually in
order to process it separately from ELAN. All the analytics done
in (Section 8) is based on this raw data. The data is exported by
clicking the “Raw Data” button in the GUI. After supplying the
file  the  data  will  be  exported  in  the  same  CSV  format  as
discussed  above.  The  data  is  formatted  in  a  similar  way  as
discussed above but only 11 columns are present if the N-gram
size  is  bigger  than  one,  9  otherwise  as  the  annotation/interval
timing is not applicable to unigrams.  Please consult  (Section 9)
for an in-depth treatment of the exported raw data.



8. DATA FROM N-GRAM ANALYSIS
The following sections will delve into the resulting data from the
analysis and explain how they are generated and further elucidate
on how the user can utilize the data.

There  are  three  categories  of  data  that  are  produced  by  the
analysis:  general,  metric-descriptive  statistics,  and  contingency
table-related  statistics.  The  general  data  is  an  overview of  the
N-gram, providing some useful metrics.  The metric-descriptive
delves  into  one  metric  of  the  N-gram  with  a  whole  host  of
descriptive  statistics  like  the  mean,  median,  mode,  and  other
statistical  measures.  Finally,  the  contingency  table-related  stats
contain the results from various algorithms executed on the table
per  N-gram.  The  N-grams  being  analyzed  in  this  section  are
generated by collating the raw results so that all occurrences of a
given  N-gram occur  as  a  contiguous group.  This  allows  us  to
generate metrics on a N-gram across the entire corpus and further
analysis can be done by the user utilizing the raw data in (Section
9).

8.1 General Data
The CSV file contains a header block before listing the rows. A
sample header is shown (Figure 10).  If desired, it is possible to
extract the generic data to use for further calculations.

# Export of N-gram Analysis done on Wed Aug 14 18:40:20 CDT 2013 
# Selected Domain: ASLLRP 
# Selected Tier: main gloss 
# N-gram Size: 2 
# Search Time: 61.459s 
# Files Inspected: 868 
# Total Annotations: 11750 
# Total N-grams: 10882 
# Total Collated N-grams: 7565

Figure 10. A sample header block in the CSV file.

The structure of the N-gram is shown in (Figure 11) and from that
most of the metrics are calculated. The figure shows a bigram, but
the same concept applies to all N-grams with a size greater than
one.  For  a  unigram  some  metrics  become  meaningless  like
“Interval Time” so take that into consideration  when analyzing
the resulting data.

Figure 11. The structure of a bigram.

8.1.1 N-gram
This  column is  self-explanatory  and  contains  the  name of  the
N-gram.  It  is  constructed  from the  annotations  delimited  by  a
vertical divider “|”. The number of annotations is determined by
the N-gram size set during the search.

8.1.2 File Occurrences
This column counts the number of files in the search domain that
contained the N-gram. The N-gram can appear multiple times in a

file and the file will only be counted once.

8.1.3 First N-gram
This column counts the number of times this N-gram appeared in
the front of  the file.  It  might not  be that  useful if  the  corpora
contains files that  contain lengthy  discourse. However, if  a file
contains single sentences, then this is an excellent indicator of the
“position” of the  N-gram relative to the utterance.  For example,
dividing this value by Occurrences (8.1.5) will give the percent of
times the  N-gram was at the start of the utterance.  For a deeper
analysis, refer to N-gram Position (8.2.1.5).  Consult (Figure 11)
for a diagram illustrating how the annotations and N-grams relate
to each other.

8.1.4 Last N-gram
This column counts the number of times this N-gram appeared in
the end of the file. This is analogous to the first N-gram (8.1.3).

8.1.5 Occurrences
This column counts the number of times this N-gram was seen in
the corpora.

8.2 Metric-Descriptive
This  class  of  statistics  displays  a  single  metric  with  several
descriptive statistics applied to it.  For example, the duration of a
N-gram is not reported as a general data because it varies within
the collation. It is necessary to apply techniques such as mean,
median, standard deviation, and others to visualize the spread of
the  metric.  A list  of  the  metrics  are  given,  then  the  list  of
descriptive statistics that is applied to each metric.

8.2.1 List of Metrics
Those values contain the observations in the N-gram, and will
have the descriptive statistics applied to them.  The columns are
named by joining the metric with the descriptive statistic by a
vertical  marker “|”  as  in  “Duration|Mean”,  “Duration|StdDev”
and so on.

8.2.1.1 After Interval
The time in seconds between this N-gram to the next N-gram in
the file. If this is the last N-gram in the file, it will be skipped
when  calculating  the  collated  statistics.  To  get  the  count  of
skipped N-grams, reference Last N-gram (8.1.4). Consult (Figure
11) for a  diagram illustrating how the annotations  and N-grams
relate to each other.

8.2.1.2 Before Interval
The time in seconds between this N-gram to the previous N-gram
in the file. If this is the first N-gram in the file, it will be skipped
when  calculating  the  collated  statistics.  To  get  the  count  of
skipped N-grams, reference First N-gram (8.1.3). Consult (Figure
11) for a  diagram illustrating how the annotations  and N-grams
relate to each other.

8.2.1.3 Duration
The time  in  seconds  for  this  N-gram.  Contains  the  annotation
time and the interval between annotations. Consult (Figure 11) for
a diagram illustrating how the annotations and N-grams relate to
each other.

8.2.1.4 Latency
The time in seconds in the file for this N-gram to appear. Same
concept  as  the  “Starting  Time”  of  the  first  annotation  in  the
N-gram.



8.2.1.5 N-gram Position
The position of this N-gram in the file. Starts at 1 for the first
N-gram.  Consult (Figure 11) for a  diagram illustrating how the
annotations and N-grams relate to each other.

8.2.1.6 Total Annotation Time
The time in seconds for the annotations in this N-gram. Does not
count the interval between annotation.  Consult (Figure 11) for a
diagram illustrating how the annotations  and N-grams relate to
each other.

8.2.1.7 Total Interval Time
The  time  in  seconds  of  intervals  between  annotations  in  this
N-gram. Does not count the annotation time. Consult (Figure 11)
for a diagram illustrating how the annotations and N-grams relate
to each other.

8.2.2 List of Descriptive Statistics
Those descriptive statistics are applied to the metrics listed above.
If a NaN (Not a Number) appears as a value in a cell, it means
there  are insufficient data to do the calculation (empty list) or a
divide by 0 occurred.

8.2.2.1 Max
The maximum value in the list.

8.2.2.2 Min
The minimum value in the list.

8.2.2.3 Mode
The value that occurs the most  often in the list. If a multimodal
list (several values having the same  frequency) occurs, then the
highest value is picked.

8.2.2.4 Mean
The arithmetic mean of the list, also known as the average.

8.2.2.5 Quartile1
The 1st quartile in the list. Calculated by finding the median of the
lower 50th percentile. Uses the unbiased algorithm by including
the  median  in  the  percentile  and  solves  ties  by  averaging  the
values. Returns NaN if the list contains less than 3 values.

8.2.2.6 Median
The center value of the list,  also known as the 2nd quartile or the
50th percentile. Ties are solved by finding the mean of the values.

8.2.2.7 Quartile3
The 3rd quartile in the list. Calculated by finding the median of the
upper 50th percentile. Uses the unbiased algorithm by including
the  median  in  the  percentile  and  solves  ties  by  averaging  the
values. Returns NaN if the list contains less than 3 values.

8.2.2.8 Variance
The measure of the spread of the values in the list, also known as
the 2nd central moment.  Uses the unbiased algorithm where the
sum of  squared  mean  deviations is  divided  by  the  number  of
elements in the list minus 1.  Returns NaN if the list contains a
single element.

8.2.2.9 StdDev
The standard deviation of the list. Uses the unbiased algorithm by
taking the square root of the unbiased variance in (8.2.1.8).

8.2.2.10 Skewness
A measure of symmetry in the list, also known as the normalized

3rd central moment. A positive value indicates a longer right tail.
A negative value indicates a longer left tail.

8.2.2.11 Kurtosis
A  measure  of  the  peakness  in  the  list,  also  known  as  the
normalized  4th central  moment.  A  positive  value  indicates  a
leptokurtic  peak  with  thin  tails.  A negative  value  indicates  a
platykurtic peak with thick tails.

8.3 Contingency Table Statistics
It is important to start this section with a description on how the
tables are generated for the bigrams. The analysis in the following
sections  can  only  be  done  on  bigrams,  the  software  will  not
output these results if a different-sized N-gram is selected for the
search.

Dunning [19] described the format of a contingency table used to
locate  collocations  in  the  corpora  (Table 1).  With  given
annotations A and B, the table contained the counts of bigrams
(A|B) found in the corpus. The notation ~A means an annotation
that is not A, and the same applies for ~B.

Table 1. The contingency table proposed by Dunning.

count( A B ) count( ~A B )

count( A ~B ) count( ~A ~B )

Dunning  reasoned  that  the  layout  of  the  table  allowed  us  to
propose hypotheses  about  the  relationship  between  the
annotations (words) in the paper:

If the words A and B occur independently, then we would expect
p(AB)  = p(A)p(B)  where  p(AB)  is  the  probability  of  A and  B
occurring in sequence, p(A) is the probability of A appearing in
the first position, and p(B) is the probability of B appearing in the
second position. [19, p70]

Using the power of distributive statistics,  it  is  now  possible to
apply a wide range of formulas on the table to see how bigrams
rank  and  compare  to  each  other.  Analyzing  a  corpus  and
discovering  hidden  relationships  is  essential  to  advancing the
team's coarticulation research. Furthermore, it is now possible to
execute parallel corpora analysis by comparing the metrics from
one corpus to another.  What follows are the list of formulas that
was implemented in ELAN.  In the CSV file, those metrics are
prefixed with “cT|” and sample columns are  “cT|Chi-squared”,
“cT|T-score”, and so on.

It  is  important  to  note  that  there  is  no definitive answer as  to
which contingency table formula is the best. There are too many
competing algorithms and each of them has a specific application.
It is up to the user to study the literature and determine which
approach best fits their corpus and hypotheses. By providing as
many methods as possible it is our hope that researchers will find
one of them useful for their project. Otherwise we welcome them
to contribute to the ELAN project by adding more algorithms and
benefit everyone.

8.3.1 Chi-squared
The  well-known Pearson's  Chi-squared  test  of  goodness  of  fit
[22].  It  is  a  standard  statistic  that  attempts  to  model  the
relationship  between  the  standard  deviation  of  the  observed
frequencies against the theoretical frequencies.

8.3.2 Dice Coefficient
This approach was proposed by Smadja et al. [23] as a suitable
tool to execute parallel corpora comparisons for bigrams.



8.3.3 Fisher Exact Left Sided
This  approach  was  proposed  by  Pedersen  [24]  to  identify
dependent bigrams. Comparing Fisher's tests to Chi-squared and
other tests, Pedersen found that Fisher was the best way to rank
bigrams  and  was  a  useful  tool  to  extract  the  most  relevant
relationships.  This  is  the left-sided variant  of  the test,  the  one
most commonly used.

8.3.4 Fisher Exact Right Sided
The same algorithm as used in Left Sided (8.3.3) but looking at
the right side of the tail.

8.3.5 Fisher Exact Two Tailed
The same algorithm as used in Left Sided (8.3.3) but looking at
both sides of the tail.

8.3.6 Jaccard Coefficient
This  approach  was  proposed  by  Chung  &  Lee  [25]  as  an
alternative  method  to  cluster  dependent  bigrams.  The  authors
concluded that Jaccard was good at emphasizing high frequency
terms.  This value is computed from the Dice Coefficient  (8.3.2)
utilizing the transformation formula: dice / ( 2 – dice ).

8.3.7 Log-likelihood
This  approach  was  proposed  by  Moore  [26]  to  identify  rare
bigrams. Moore used the observation proposed in Zipf's law [27]
to  formulate  the  argument  that  most  corpora  will  have  a
distribution of words that is unsuitable for processing with other
methods.

8.3.8 Odds Ratio
This  metric was utilized in Szmrecsanyi [28] while studying the
persistence of associations in corpus. The same formula was used
to great effect in Blaheta & Johnson's machine learning system
[29].  The calculation of this formula smoothed out zeroes in the
denominator by converting them to one before dividing.

8.3.9 Phi Coefficient
This  is  the  mean  square  contingency  coefficient  proposed  by
Pearson.  It  was  useful  in  identifying  concordances  in  parallel
corpora by Church  & Gale [30].  A note of caution: this is the
Phi^2 coefficient, not the Phi as proposed by Pearson. The reason
for this is that Church & Gale used Phi^2 in their paper and if the
Phi value is needed, it can be calculated by the user taking the
square root of the given Phi^2 value.

8.3.10 Pointwise Mutual Information
This  statistic  was  proposed  by  Church  & Hanks  [31]  to  find
associations  between words.  It  was  useful  in  their  research  to
discover associations that was relevant and is based on Palermo &
Jenkins' work [32].

8.3.11 Poisson-Stirling Measure
This  statistic  was  proposed  by  Quasthoff  &  Wolff  [33]  as  an
alternative method to find collocations in corpora.  It is based on
the mathematical poisson distribution and was a good match for
their corpus.

8.3.12 T-score
The applications of the standard t-test to contingency tables was
analyzed in depth by Church, et al. [34]. They discovered that the
t-score was a good metric to use in their parse tree algorithms.

8.3.13 True Mutual Information
This  method  was  proposed  by  Lin  [35]  to  identify
non-compositional phrases to great effect. It is a modified variant

of the PMI formula (8.3.10).

9. RAW DATA FROM N-GRAM ANALYSIS
The following section will discuss the raw data generated from
searching the corpus.  The raw data lists each individual N-gram
and its associated metrics. Utilizing this data might be desirable
in situations where the user needs to double-check the analytics
done in ELAN (Section 8) or to calculate other algorithms.

9.1 General Data
The raw data CSV file will have a header similar to the statistical
data  as  shown  in  (Figure  10).  After  the  header,  the  rows  of
N-gram data  are shown with their metrics.  What follows is an
explanation of the columns in the data.

9.1.1 N-gram
The name of the N-gram, same as in (8.1.1).

9.1.2 After Interval
The time in seconds between this N-gram to the next N-gram in
the file. Similar concept as in (8.2.1.1) but returns NaN if it is the
last N-gram in the file.

9.1.3 Before Interval
The time in seconds between this N-gram to the previous N-gram
in the file. Similar concept as in (8.2.1.2) but returns NaN if it is
the first N-gram in the file.

9.1.4 Duration
The time  in  seconds  for  this  N-gram.  Contains  the  annotation
time and the interval between annotations. Similar concept as in
(8.2.1.3).

9.1.5 File
The full path to the EAF file containing this N-gram.

9.1.6 First N-gram
A boolean value representing whether this N-gram is the first one
in the file. Returns 1 if true, 0 otherwise.

9.1.7 Last N-gram
A boolean value representing whether this N-gram is the last one
in the file. Returns 1 if true, 0 otherwise.

9.1.8 Latency
The time in seconds in the file for this N-gram to appear. Similar
concept as in (8.2.1.4).

9.1.9 N-gram Position
The position of  this  N-gram in the  file.  Similar  concept  as  in
(8.2.1.5).

9.1.10 Total Annotation Time
This column will  only be present if the N-gram size is greater
than one. The time in seconds for the annotations in this N-gram.
Similar concept as in (8.2.1.6).

9.1.11 Total Interval Time
This column will  only be present if the N-gram size is greater
than  one.  The  time  in  seconds  of  the  intervals  between
annotations in this N-gram. Similar concept as in (8.2.1.7).

10. RESULTS
With the extended functionality added to ELAN, it was time to
analyze the ASLLRP corpus to see what we could discern. For a
first pass, we generated a listing of bigrams/trigrams/quadgrams



in the corpus sorted by occurrences (8.1.5) on the main gloss tier.
A sample row of data from a bigram is displayed in (Appendix 2).
The bigram data is in (Table 2), the trigram data is in (Table 3),
and the quadgram data is in (Table 4).

Table 2. ASLLRP top 5 bigrams sorted by occurrences.
HOLD|IX-1p 41

READ|BOOK 41

part:indef|HOLD 35

fs-JOHN|HOLD 33

BUY|HOUSE 32

Table 3. ASLLRP top 5 trigrams sorted by occurrences.

FINISH|READ|BOOK 21

fs-JOHN|FINISH|READ 15

IX-3p:i|OLD|MAN 12

OLD|MAN|ARRIVE 12

READ|BOOK|HOLD 12

Table 4. ASLLRP top 5 quadgrams sorted by occurrences.
fs-JOHN|FINISH|READ|BOOK 12

IX-3p:i|OLD|MAN|ARRIVE 12
RAIN|IX-1p|GO-OUT|MOVIE 10

fs-JOHN|BUY|YESTERDAY|"WHAT" 8
fs-JOHN|SEE|WHO|YESTERDAY 7

It  was  not  that  interesting  to  see  the  N-grams  sorted  by
occurrences  as  the  ASLLRP corpus  contained  a  lot  of  similar
utterances.  A better  perspective was enabled by looking at  the
newfound statistics in the contingency tables. What follows is the
listing  of  bigrams  sorted  by  T-score  (Table 5),  Log-likelihood
(Table  6),  and  Poisson-Stirling  Measure (Table  7).  The corpus
was skewed due to the small size and other metrics didn't reveal
anything interesting or calculated invalid values.

Table 5. ASLLRP top 5 bigrams sorted by T-score.
READ|BOOK 6.2901917496

BUY|HOUSE 5.5409633338

FINISH|READ 5.2800307345

BUY|CAR 5.1479860252

part:indef|HOLD 5.1049584814

Table 6. ASLLRP top 5 bigrams sorted by Log-likelihood.
READ|BOOK 301.3458757921

BUY|HOUSE 216.6114915741

FINISH|READ 196.6206869188

ICL"nailing"|ICL"nailing" 151.4392662362

BUY|CAR 140.1247669654

Table 7. ASLLRP top 5 bigrams sorted by Poisson-Stirling
Measure.

READ|BOOK 124.5477961338

BUY|HOUSE 92.4151636457

FINISH|READ 85.1488365045

ICL"nailing"|ICL"nailing" 62.8151343883

BUY|CAR 61.5550805055

It was good to see a high degree of correlation between several
metrics in the corpus, but we knew that the corpus needed to be
expanded in order to utilize the other metrics. Another thing we
did was to analyze the relationships between glosses by taking the
T-score  sorted  list  and  filtering  rows  based  on  search  criteria.
Some  interesting  collocations  were discovered  based  on  this
method and a  sample output is presented in (Table  8)  and the
reversed order in (Table 9).

Table 8. ASLLRP top 5 collocations of READ sorted by
T-score.

READ|BOOK 6.2901917496

READ|MAGAZINE 1.9831832384

READ|BOOK+ 1.8962966366

READ|YESTERDAY 1.5702314434

READ|LIP 1.4062860649

Table 9. ASLLRP top 5 collocations of READ sorted by
T-score.

FINISH|READ 5.2800307345

fs-JOHN|READ 2.4195405281

FUTURE|READ 2.0380232875

TURN|READ 1.7158688712

(2h)MUST|READ 1.4062860649

The  contingency  tables  proved  to  be  a  powerful  method  of
looking at the corpus. To further the team's coarticulation efforts
different data was needed and it was included in the CSV export.
The timing data is contained in the “Total Interval Time” column
and  with  the  proper  filtering/sorting  it  revealed  interesting
relationships  between  collocated  glosses  and  their  timings.  A
sample output is given in (Table 10) and the reversed order in
(Table 11).

Table 10. ASLLRP top 5 collocations of CAR sorted by Total
Interval Time|Mean, descending.

CAR|FINISH 1.1s

CAR|i:(1h)GIFT:k 0.333s

CAR|STEAL 0.30825s

CAR|BOOK+ 0.267s

CAR|IX-loc:j 0.266s

Table 11. ASLLRP top 5 collocations of CAR sorted by Total
Interval Time|Mean, ascending.

CAR|HOLD 0s

CAR|NEVER 0.066s

CAR|BUY 0.089s

CAR|#NO 0.1s

CAR|(1h)GIFT:k 0.1s

The  scope  of  this  project  is  now  finished,  and  the  improved
analytics  capabilities  of  ELAN  will  help  the  team  study  the
corpus  in  depth  and  develop  coarticulation  models  based  on
corpus data. Many interesting combinations of the metrics can be
imagined  and  sorted  to  their  content  to  discover  new
relationships.

11. FUTURE WORK
This  project  was  completed  over  the  summer,  and  time
constraints prevented the implementation of everything that was
discussed in our brainstorming sessions and research. Some ideas



are  listed  in  this  section,  and  hopefully  the  opportunity  will
present  itself  for  somebody  to  tackle  them  and  contribute
massively to ELAN and related corpora research.

11.1 Parallel Corpus Analysis
With the application of the contingency tables, the ability is there
for ELAN to analyze multiple search domains at the same time
and  present  concordances  between  the  domains.  This  is  an
extension of the metrics and would be a great fit for some of them
as they are tailored towards that goal.

11.2 Tier Correlation Analysis
With the infrastructure in place to generate N-grams, it should be
trivial to change the focus of the search engine from a single tier
to  multiple  tiers.  Finding  correlations  between  tiers  and
generating N-grams of the matches would be immensely helpful
to  the  sign  language  linguistics  community.  It  can  answer
questions such as “Which gloss is commonly used with a head
nod?” or “When the eyes are gazing left, which annotations are
active?” It is our belief that kind of data would be the next step in
corpus analytics.

11.3 Speed Optimizations
Programming the Java code was completed in a relatively short
time and could benefit from dedicated math libraries to reduce the
calculation  time.  Furthermore,  taking  advantage  of  multiple
processors  could  give  another  boost  to  reducing  the  time  to
calculate all the statistics.

11.4 Skiplists and Improved Parsing
In our analytics of the ASLLRP corpus, we noticed that HOLD
was  one  of  the  most  common annotations  in  the  gloss  tier.  It
would be beneficial to have a GUI dialog to input annotations to
skip  in  order  to  improve  the  accuracy  of  the  analysis.
Furthermore, adding algorithms to the N-gram builder could help
in  identifying  common  boundaries  and  segmenting  them  to
improve  the  N-gram  position  indicators,  revealing  the  true
position of specific annotations in the corpus.
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Appendix 1. Pecina's Collocation Extraction Methods.



N-gram READ|BOOK After Interval|Kurtosis 0.0499770475 After Interval|Max 0.267

After Interval|Mean 0.09490625 After Interval|Median 0.1 After Interval|Min 0

After Interval|Mode 0 After Interval|Quartile1 0 After Interval|Quartile3 0.167

After Interval|Skewness 0.0360263132 After Interval|StdDev 0.0880972188 After Interval|Variance 0.00776112

Before Interval|Kurtosis 0.088082922 Before Interval|Max 0.267 Before Interval|Mean 0.1343170732

Before Interval|Median 0.134 Before Interval|Min 0.033 Before Interval|Mode 0.1

Before Interval|Quartile1 0.1 Before Interval|Quartile3 0.167 Before 
Interval|Skewness

0.1208337897

Before Interval|StdDev 0.0487085408 Before Interval|Variance 0.002372522 Duration|Kurtosis 0.10522378

Duration|Max 0.834 Duration|Mean 0.425097561 Duration|Median 0.4

Duration|Min 0.167 Duration|Mode 0.4 Duration|Quartile1 0.3495

Duration|Quartile3 0.5 Duration|Skewness 0.1368870124 Duration|StdDev 0.1344374957

Duration|Variance 0.0180734402 File Occurrences 41 First N-gram 0

Last N-gram 9 Latency|Kurtosis 0.2543078537 Latency|Max 6.5

Latency|Mean 1.6534146341 Latency|Median 1.233 Latency|Min 0.6

Latency|Mode 1.233 Latency|Quartile1 1 Latency|Quartile3 1.933

Latency|Skewness 0.375469452 Latency|StdDev 1.0962834254 Latency|Variance 1.2018373488

N-gram Position|Kurtosis 0.2699299013 N-gram Position|Max 17 N-gram Position|Mean 4.3170731707

N-gram Position|Median 3 N-gram Position|Min 2 N-gram Position|Mode 3

N-gram 
Position|Quartile1

2.5 N-gram Position|Quartile3 5 N-gram 
Position|Skewness

0.3826203245

N-gram Position|StdDev 2.8145961024 N-gram Position|Variance 7.9219512195 Occurrences 41

Total Annotation 
Time|Kurtosis

0.1494467014 Total Annotation Time|Max 0.667 Total Annotation 
Time|Mean

0.2584390244

Total Annotation 
Time|Median

0.234 Total Annotation Time|Min 0.099 Total Annotation 
Time|Mode

0.267

Total Annotation 
Time|Quartile1

0.1995 Total Annotation 
Time|Quartile3

0.268 Total Annotation 
Time|Skewness

0.218791281

Total Annotation 
Time|StdDev

0.1107497288 Total Annotation 
Time|Variance

0.0122655024 Total Interval 
Time|Kurtosis

0.1434024263

Total Interval Time|Max 0.4 Total Interval Time|Mean 0.1666585366 Total Interval 
Time|Median

0.166

Total Interval Time|Min 0.066 Total Interval Time|Mode 0.2 Total Interval 
Time|Quartile1

0.133

Total Interval 
Time|Quartile3

0.2 Total Interval 
Time|Skewness

0.1736940625 Total Interval 
Time|StdDev

0.0627883786

Total Interval 
Time|Variance

0.0039423805 cT|Chi-squared 2283.080383528
2

cT|Dice Coefficient 0.4315789474

cT|Fisher Exact Left 
Sided

1 cT|Fisher Exact Right Sided 4.807822033697
58E-067

cT|Fisher Exact Two 
Tailed

4.807822033697
58E-067

cT|Jaccard Coefficient 0.2751677852 cT|Log-likelihood 301.3458757921 cT|Odds Ratio 250.0301136364

cT|Phi Coefficient 0.2098033802 cT|Pointwise Mutual 
Information

5.8252435247 cT|Poisson-Stirling 
Measure

124.5477961338

cT|T-score 6.2901917496 cT|True Mutual 
Information

378.4420409622

Appendix 2. Sample row from the analytics of bigrams in the ASLLRP corpus.


