
Scalable Parallel RRT Method for Motion Planning

Nick Stradford1, Sam Ade Jacobs2, Nancy M. Amato2

nickstradford@gmail.com, sjacobs@cse.tamu.edu, amato@cse.tamu.edu

Abstract— Motion planning is not only an important
component of robotics, but also bio-informatics. As these
fields progress and problem sizes increase, faster approaches
need to be created. Parallel computation can be used to
significantly speed up the computation. This paper studies
the effects of parallelizing the Rapidly-exploring Randomized
Tree (RRT) method, one of the two types of state-of-the-art
sampling-based algorithms for solving motion planning prob-
lems. RRT helps solve motion planning problems by creating
a tree to locally explore in C-Space. One implementation
of parallel RRT updates the global tree immediately, which
has a large communication overhead. The strategy proposed
in this paper allows the user to specify how much of the
tree will be created locally before updating the global tree
shared amongst the processes. This paper experiments with
various values of this k-parameter that is used to control the
granularity of the local growth.

I. I NTRODUCTION

Motion Planning can be defined as the problem of
trying to get a start configuration to a goal configuration
while avoiding obstacles [6]. Besides robotics, it is also
used in computer animation [2], [11] and bio-informatics
[14], [15], [3]. In robotics it can be used to create a
way for a robot to navigate from configuration A to
configuration B. In bio-informatics, it can be used to
study protein folding problems. Common solutions to the
Motion Planning problem utilize a popular sampling based
technique known as Probabilistic Roadmaps (PRM) [10].
PRMs are able to effectively create maps for multiple-
query path planning. For single-query path planning, the
Rapidly-exploring Randomized Tree (RRT) [12] method
has been the most popular choice. RRTs quickly create
a tree-like structure throughout C-Space by learning and
exploring at the same time.

PRMs implement two phases in their application. These
phases are the learning phase and the query phase. The
learning phase is the part of the algorithm in which samples
are created in C-Space and stored. Upon completion of
the sampling part of the learning phase, the nodes that
were sampled are then connected to each other to form a

This research supported in part by NSF awards CRI-0551685, CCF-
0833199, CCF-0830753, IIS-096053, IIS-0917266 by THECB NHARP
award 000512-0097-2009, by Chevron, IBM, Intel, Oracle/Sun and by
Award KUS-C1-016-04, made by King Abdullah University of Science
and Technology (KAUST).
The work of Stradford was supported in part by DREU, at Texas A&M
University.
1Computer Science, University of North Texas, Denton, TX 76201, USA.
2Parasol Lab Department of Computer Science and Engineering, Texas
A&M University, College Station, TX 77843, USA.

roadmap of C-Space. Now the roadmap can be used to an-
swer queries. This is done by placing a start configuration
and a goal configuration onto the roadmap and calculating
the path needed to get from the start to the finish. Because
of their learning phase, PRMs can reuse their roadmap for
multiple queries.

RRTs take a different approach in handling the motion
planning problem. Essentially, a tree starts growing from
the start configuration node towards the goal configuration
node. At the beginning of a single tree RRT implemen-
tation, the root node is the start configuration and the
tree grows incrementally node by node towards the goal
configuration. RRTs merge learning about the environment
and creating a path into the same step so they are better
suited for single-query planning.

As efficient as the PRM and RRT methods are, they
can still be improved by parallelizing them. PRMs were
shown to be efficiently parallel in [1], [9]. This helped
prove parallelization was the next step in improving re-
sults in motion planning. Yet, parallelizing code brings
in factors unique to parallel programming. One of these
factors is inter-process communication. If an excessive
amount of communication is done in a parallel algorithm,
it can hinder the performance of that algorithm greatly.
This paper discusses a parallel RRT method we will call
Distributed k-RRT to study how we may be able to increase
the efficiency of RRT methods in a way that varies the
amount of inter-process communication.

In this paper we will discuss a previously implemented
Distributed RRT, and it’s design. Secondly, we will de-
scribe our Distributed k-RRT method and how it can vary
the amount of communication between processes. Thirdly,
we will show the experiments we ran and show the results
of those experiments. Lastly, we will conclude and talk
about future work.

II. RELATED WORK

A. Parallelizing RRT

With technology now being able to execute parallel
code and parallel code garnering improved results, motion
planning has been attempted to be parallelized in all
aspects. In [9], a method is proposed that decomposes
environments and partitions these chunks as regions on
each processor. Each processor then handles constructing
its each region, and then these regions are connected to
form one or as few as possible connected components.
This was a unique way of parallelizing motion planning.

As for directly parallelizing RRT, it was parallelized
in [13], making the Sampling-Based Roadmap of Trees
(SRT) method. Their method combined the aspects of PRM
sampling, with RRT exploration to do local planning. The
random samples made throughout C-Space serve as the
root nodes of RRTs (called milestones) that will be created
in that area. Next, after the milestones are computed, each
milestone is compared to other milestones to select the
best pairs of milestones that may connect to each other to
form an edge in their edge selection phase. Attempting to
connect these milestones is done in a couple of ways in
their edge computation phase. First, two milestones attempt
connection through a straightline planner. Secondly, if
that fails, a bi-directional RRT method can be used to
connect them and create the egde that is sought after. Their
parallel implementation worked by having each processor
make a certain number of milestones until k milestones
has been created in parallel. Their edge selection process
was not parallelized because it took less thatn 3% of
the computation time, but they parallelized their edge
computation section. The parameters used to set up the
SRT method can be tweaked to create replicas of PRM,
RRT, or EST [8].

Parallelization is not limited to only CPU based-
implementations. The methods presented by [4] were able
to implement RRT in parallel using general GPU’s. This
paper parallelized the RRT method and the RRT* method.
A big part of their focus was parallelizing the collision
detection step needed to expand a tree. The difference
between RRT and RRT* lies in how they expand their
trees. Their RRT method uses a straight-line planner to
see if a potential path between a node and its nearest node
is collision free. If so, it adds the edge created by these two
nodes to the tree. The RRT* method was more complex
in how it added new nodes to the tree. It analyzed paths
created by other neighbors in addition to the path found
for the nearest neighbor, so it can try and find a better edge
to create.

Another parallelization of RRT was discussed by [7].
This paper was able to implement three parallel versions of
RRT. They used the OR paradigm, a manager/worker RRT
method, and a Distributed RRT method for the third one.
Their OR RRT was the most general. It parallelized RRT
by having each processor run its own seperate sequential
RRT method. Whenever one of the processors found a
solution it stopped the others and returned its result. Their
manager/worker RRT classified processors into either man-
agers or workers. Managers delegated work to workers and
were the only processors with access to the global tree. The
workers in their algorithm waited for work to be given to
them. The work given to them was extending the tree by
creating new nodes and reporting the information about
the new nodes back to the manager.

The third version of RRT [7] experimented with was
their Distributed RRT. In their paper, their Distributed RRT

made each processor keep a local copy of the overall tree.
Whenever a new processor successfully adds a new node
to its local copy of the tree, it broadcasts that creation to
the other processors so that they can update their copy of
the overall tree. Their Distributed RRT alerts every other
processor to a new node every time one is created and we
aim to study ways of improving or varying this amount of
communication. This version of a Distributed RRT is the
closest parallel RRT to our implementation.

III. D ISTRIBUTED K-RRT

Our paper proposes a different approach to creating a
Distributed RRT than Devaurs et. al [7]. Our method
uses the STAPL framework [5] to implement our method.
STAPL allows us to create a globally shared graph, so
our tree is distributed among the processors being used.
Because of this, we do not store a local copy of the overall
tree on each processor like the previously implemented
version. Also, we introduce a parameter, k, that can be
adjusted to vary how often the global graph is updated by
one individual processor. The algorithm we used to create
our tree is given below:

Algorithm 1 Distributed k-RRT
Input: EnvironmentE, k-Variablek, Total # of NodesN ,

of ProcessesP .
Output: A tree T.

1: do once{
2: T.initialize()
3: T.root← GetV alidRandomNode(Env)
4: }
5: Barrier()
6: for all proc p ∈ P par do
7: i← 0
8: while i < N/P do
9: NodeContainerNc

10: for j = 1→ k do
11: Noderand← GetV alidRandomNode(E)
12: Nodenn← NearNeighbor(T, rand)
13: Nodenew ← Extend(nn, rand)
14: Nc.add(new)
15: end for
16: for all Noden ∈ Nc do
17: if IsV alid(n) then
18: T.AddToTree(n)
19: i← i + 1
20: end if
21: end for
22: end while
23: end for
24: Return T .

Intitially, we create a root node from which all proces-
sors will grow. This is done in Algorithm 1 lines 1-4. Since
this only creates one node, we only need one processor to

handle this. This is the reason we labeled this block of the
alogrithm ”doonce”. Because we are using one processor
to handle the creation of this root node, we need to make
sure the other processors wait for this root node to be
created. That is what the ”Barrier()” method does.

At this point, we now have the root node in our global
tree that every processor will grow from. So, in parallel
all processors will create N/P nodes; where N is the total
number of nodes that are to be created, and P is the number
of processors that will be used. In Algorithm 1 line 9, we
instantiate a container that will hold the new local nodes
we are about to create. Lines 11-14 of our algorithm are
used to do three steps needed to extend our tree. First, we
sample a random node that will be the direction we extend
our tree. Secondly, we find out which node is the nearest
node to the random node we just created. In our case, we
have called this nearest node ”nn”. Lastly, we extend our
tree from our ”nn” node towards our random node, and
then add this new node to our temporary node container.
We continue to repeat Algorithm 1 lines 11-14 until we
have created k nodes locally on that particular processor. At
that point we iterate over our node container, and add each
new node to our global tree. These steps are done in lines
16-20. Also, note that in Algorithm 1 line 19, whenever we
add a new node to our global graph, we increment our ”i”
counter by 1 to keep track of the number of nodes added
to the global graph by this processor. The ”i” variable is
the stopping condition to determine whenever a processor
has successfully made N/P nodes.

A. The k Parameter

The k parameter presented in Algorithm 1 can help
limit communication to the overall graph by increasing
its size. If k was set to equal the value of N/P, then each
individual processor would not have to interact with the
global graph until it successfully made one batch of k
nodes. This would be effective in reducing communication
with the global graph or other processors, but this would
cause your root node to be the nearest neighbor node every
time you sampled for the nearest neighbor.

This presents the factor you must consider when choos-
ing a value for k. A lower k value has more commu-
nication/interaction with the global graph, but it has a
more accurate or spread out tree created from it. A higher
k value will not communicate with the global graph as
much, but it may be forced to use nearest neighbors that
wouldn’t be selected if every node created by a processor
was already in the global tree. A user will have to think
about this while experimenting with k values. One could
also note that when using k set to 1, you are using a
general Distributed RRT method similar to the Distributed
RRT made by Devaurs et. al [7] in which you update your
overall tree every time a new node is created.

IV. EXPERIMENTS

A. Setup

We ran three different experiments for our results. For
each experiment, we varied our values for k to be 1, 8,
16, 32, and 64, respectively. Also, we varied the number
of processors to be 1, 2, 4, 8, 16, 32, and 64, respectively.
The object was to create a tree of 4096 nodes using our
Distributed k-RRT algorithm.

B. Environments and Robots

The environment we experimented in was a homogenous
cluttered environment. The dimensions of this environment
were set to 512x512x512 units with 216 obstacles as
seen in Figure 1. Each obstacle had the dimensions of
2x64x64 units. As for the three robots experimented with,
the first one was a cube-like rigid body with 6 degrees of
freedom. The second was a 8 degree of freedom articulated
linkage robot. Lastly, the third was a 16 degree of freedom
articulated linkage robot.

Fig. 1. The scattered environment used in our experiments.

C. Results

For our experiments, the graphs follow the trend of hav-
ing a faster computation time as the value of k increases,
as seen Figures 2, 3, 4. This occurs because of the fact
that as k increases, processors have to interact with the
global graph less. In our experiments, the higest value of
k we used was 64, our highest number of processors used
was 64, and we created a total of 4096 nodes. A point
to note is that 64 is the square root of 4096. So, in our
tests, when k and the number of processors were set to
64, we executed the fastest computation time. This occured

because each processor always creates N/P nodes, and in
those cases N/P was equal to 64. So each processor had to
make its N/P amount to satisfy its k value, which caused
each processor to only update the global graph one time.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 64 32 16 8 4 2 1

T
im

e(
s)

of Cores

Distributed k-RRT Total Time (n=4096)

k=1
k=8

k=16
k=32
k=64

Fig. 2. Test results for a rigid cube shaped robot.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 64 32 16 8 4 2 1

T
im

e(
s)

of Cores

Distributed k-RRT Total Time (n=4096)

k=1
k=8

k=16
k=32
k=64

Fig. 3. Test results for a 8 degree of freedom articulated linkage robot.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 64 32 16 8 4 2 1

T
im

e(
s)

of Cores

Distributed k-RRT Total Time (n=4096, 16 Dof)

k=1
k=8

k=16
k=32
k=64

Fig. 4. Test results for a 16 degree of freedom articulated linkage robot.

V. CONCLUSION

We have discussed a way to vary the communication
cost of distributed RRT methods. Instead of updating the

global tree every time a new node is created, we create
nodes and store the information about these newly created

nodes locally. We continue to store information about these
new nodes until our threshold of how many local nodes we
will create is hit. This threshold is set with our parameter,
k.

A. Future work

In regards to our implementation, finding the closest
neighbor to expand our tree from was the most time
expensive part of our method. In the future, we would like
to parallelize this act of finding the closest neighbor. Hope-
fully, this will reduce the time spent finding a neighbor and
give more scalable results. We believe fixing this problem
would allow us to use a larger number of processors to
further test on.

REFERENCES

[1] N. M. Amato and L. K. Dale. Probabilistic roadmap methodsare
embarrassingly parallel. InIn Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 688–694, 1999.

[2] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better group behaviors
using rule-based roadmaps, 2002.

[3] O. B. Bayazit, G. Song, and N. M. Amato. Ligand binding with
obprm and haptic user input: Enhancing automatic motion planning
with virtual touch, 2000.

[4] J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing
the rrt and the rrt. InIROS’11, pages 3513–3518, 2011.

[5] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato, and
L. Rauchwerger. Stapl: standard template adaptive parallel library.
In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference, SYSTOR ’10, pages 14:1–14:10, New York, NY, USA,
2010. ACM.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun.Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June
2005.

[7] D. Devaurs, T. Simon, and J. Corts. Parallelizing rrt on distributed-
memory architectures. pages 2261–2266, 2011.

[8] D. Hsu, J. claude Latombe, and R. Motwani. Path planning in
expansive configuration spaces. InInternational Journal of Com-
putational Geometry and Applications, pages 2719–2726, 1997.

[9] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M.
Amato. A scalable method for parallelizing sampling-basedmotion
planning algorithms.Proc. IEEE Int. Conf. Robot. Autom, 2012.

[10] L. E. Kavraki, P. Svestka, L. E. K. P. Vestka, J. claude Latombe, and
M. H. Overmars. Probabilistic roadmaps for path planning inhigh-
dimensional configuration spaces.IEEE Transactions on Robotics
and Automation, 12:566–580, 1996.

[11] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions
with intentions, 1994.

[12] S. M. LaValle, J. J. Kuffner, and Jr. Randomized kinodynamic
planning, 1999.

[13] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki.
Sampling-based roadmap of trees for parallel motion planning.
IEEE Transactions on Robotics, 21:597–608, 2005.

[14] A. P. Singh, J. claude Latombe, and D. L. Brutlag. A motion
planning approach to flexible ligand binding, 1999.

[15] G. Song. Using motion planning to study protein foldingpathways.
In Journal of Computational Biology, pages 287–296, 2001.

