
Mapping Facial Movements to Robot Face

Miguel Salcedo, Undergraduate Student at Vassar College Class of 2014

Introduction:

As machines begin to occupy more aspects of our lives, it is sometimes necessary to have

machines that mimic human-like facial expressions. Such applications include interacting with

children in autism research, or testing certain aspects of human-human interaction through

recreating the interaction using a robot (i.e., medical mannequins). The problem of providing

realistic facial expressions requires that such expressions be synthesized on a robotic face. Due

to the nature of a robot face, with its limited DOF, this leads to a loss of realism. In order to

maximize the human qualities retained when synthesizing the facial expressions we introduce a

control system for a 2-dimensional robotic face.

This system uses Constrained Local Models (CLM) to extract information about the

configuration of the face in the input stream. CLM has been shown to be more robust and more

accurate than AAM when applied to human faces, and also uses the same joint model of

appearance and texture, Cristinacce et al. [2]. CLM, on the other hand, uses a different method

for searching the given image. AAM uses triangular search areas across the given shape to search

for the feature pints in its Point Distribution Model. CLM uses rectangular search areas around

feature points that are decided by patch experts; as opposed to AAM full image search. It is these

features that makes CLM more robust when used on human faces.

Using this system we hope to provide two forms of control for robotic faces. One form

being real-time mapping of the input face to movements in the robot face, the other form being

the creation of a database of facial expressions from which the robot face can choose to express.

This system outputs facial animations rather than static expressions, therefore making them more

human-like by displaying the gradual change in facial composition.

Description:

 In order to create the system we had to break down the problem into parts that can be

more readily handled. As in Mayer et al. [1], we decided the best way to tackle the problem

would be to separate it into two phases. The first phase being Recognition has two parts, the

second phase is Synthesis. The recognition phase is further broken down into untrained and

trained recognition. We use the 2D shape provided in the CLM-Z tracker’s Point Distribution

Model (PDM), Baltrusaitis et al. [3]. This is due to the 2D nature of the robotic face we are

modeling our system after. The 2D shape provided by the PDM is a matrix of 66 vertex points.

These vertex points represent feature points that define the overall shape of the face.

 The untrained recognition phase uses these vertex points to learn their maximum possible

movement in all four (up, down, left, right) directions. The trained recognition phase simply

records the movement of all vertex points in every direction for the synthesis phase. Since

objects closer to the camera take up more pixels: as the distance of the object from the camera

increases (z-axis) the pixel movement amount (x and y axis) increases for the same real world

distance moved. In order to account for this we scale all pixel movement values based on the

distance between the two inner eye corners, as defined by a learned neutral face. This neutral

face is created by using the first batch of vertex point sets (batch size can be easily varied) and

the calculating the average for each vertex point after normalizing it. To normalize a vertex point

(to account for relative position of the face in the input video) we define the vertex point set by

using the midpoint between the inner eye corners and calculating the distance between that

midpoint and each vertex point.

 Once the maximum movement values have been learned and a number of 2D shapes have

been normalized and recorded (after calculating movement amount from the learned neutral face),

the synthesis phase can then begin to recreate the input expressions on the robot face. To do this,

the synthesis phase, calculates intensity and left-right balance values for each of the defined

Action Units (from the Facial Action Coding System). This definition of AU, rather than motor

and servo movements, allow the system to be applied to multiple robot configurations; leaving

the definition of each AU to the individual robotic face configuration.

Experiment:

To test the system we needed a virtual robot face that could perform the desired facial

expressions. For this purpose we use the Source SDK and its provided Face Poser program to

define facial expression animations using models created for the Half-Life 2 video game by

Valve. Due to the nature of Face Poser real time control was not possible for the experiment.

This is not much of a loss, since the frame rate for processing the video was extremely low

(~4FPS), this would lead to very unnatural facial expressions. With this limitation in mind we set

out to implement the system to work with Face Poser. For this purpose we added a FileIO part to

the system that handles all file operations. FileIO handles the formatting of the file that holds all

the information on the maximum movement for each vertex point. It also handles the formatting

of the facial animation file for Face Poser (vcd file format).

Face Poser provides a rich set of features for creating dialogue scenes in mods. For our

purposes we focus on the facial animation aspect. Face Poser defines a set of flex points that

manipulate the face image based on an intensity and balance slider (for those with a left and right

aspect). These flex points are based on the Action Units defined in FACS. For our experiment we

defined the synthesis phase to work with a total of 11 flex points (lid_tightener, lid_closer,

inner_raiser, outer_raiser, lowerer, corner_puller, corner_depressor, part, puckerer, stretcher,

head_tilt). We wanted to cover 21 DOF, but due to the lack of tracking for the eyeballs we could

not provide that aspect. We also could not calculate movement of the head to the right, left, up,

or down due to the high complexity of the problem. Each flex point (interchangeable with action

unit) is defined, in the synthesis phase, by listing each of the vertex points that pertain to it. For

each of the vertex points a group of flags is used that define details about the point. These details

include: the side it is a part of (left or right), the directions it moves in when associated with this

flex point (up, down, left, or right).

To calculate the intensity for each flex point we simply averaged the amount moved by

all the vertex points associated with it (separate averages for left and right side) and calculated its

ratio to the average maximum movement for the respective sides. If the movement of the vertex

point does not match what was defined in the synthesis phase a 0 intensity value is returned.

These calculations leave us with values for the intensity of the left and right sides. We then use

those intensities to calculate the left-right balance required by Face Poser. Since there is no

available formula for how Face Poser calculates the intensity of the weak side of the left-right

balance we needed to come up with a suitable approximation. Using the approximation that:

Weak_intensity = (1.0 – (unfixed_balance * 2)) * strong_intensity

We could then work using the weak and strong intensities (left and right, depends on which is

more intense) to find what the unfixed balance is. The unfixed balance is simply a designation to

account for the fact that Face Poser uses a value between 0 and 1.0 for the balance value, where

[0, 0.5) denotes the left intensity as the strong intensity, 0.5 denotes equal intensity for left and

right, (0.5, 1.0] denotes the right as the strong intensity. The unfixed balance works with size of

the range and then adds 0.5 to fix the balance if the strong intensity is the right side. Now that we

have the intensity and balance values we simply use FileIO to create a vcd file and open it using

Face Poser to see the result.

Results:

 We tested the system using 2 sets of videos. One set was used to create the max files for

use by the synthesis phase; these videos were each approximately 30 seconds. The second set

consisted of minute long videos to be synthesized. The first set contained 4 videos, the second

contained 5. Each of the videos in the second set was synthesized using all 4 of the videos in the

first set. This was done to test the effects of the determined maximum movement values on the

overall accuracy of the synthesized expression.

 Upon analyzing the output animations in Face Poser we discovered that despite our

misconceptions the CLM-Z tracker did not track eye lid movement. This means that the vertex

points defined for the eye region tracked the surrounding shape of the eye, not the eye lids. This

made the lid_closer flex point useless. Another issue we ran into concerned our assumption that a

2D shape was provided for each frame of the video. We were wrong in our assumption; despite

using it to approximate the time that corresponds to each vertex point set. This means that most

of the output animations are a bit shorter than the input video, making them less realistic.

 Making flex point intensity default to 0 when a vertex point did not move in the correct

direction resulted in a lot of time spent in the neutral position. When there was movement in the

face it was fairly accurate. The lack of movement can be accounted to the interference between

different flex points on the same vertex point. The eye brows appeared to be the most accurately

synthesized part of the face.

Conclusion:

 We introduced a system for controlling a robotic face that provided both real-time control

and off-line control based around the CLM-Z facial tracker implementation by Baltrusaitis et al

[3]. This system was divided into 2 phases, recognition and synthesis phase, as discussed in

Mayer et al [1]. We tested the off-line control aspect using the Source SDK’s Face Poser

program for a virtual face. Due to misconceptions about the CLM tracker’s PDM the timing of

the off-line control was thrown off leading to unrealistic expressions. Real-time control could not

be tested using the current implementation of the tracker because of frame rate issues and the

inability to do real-time animations in Face Poser.

 Future Work:

 Many areas of the experiment implementation can be improved. Firstly we could improve

the accuracy of the definitions of each vertex point for the flex points. This can be achieved by

analyzing a video where the desired flex animation is performed and then learning the directional

movement for all vertex points. Then we filter out the points not near the area the flex point

affects. Lastly we use only those vertex points that moved a significant amount. This gives us

higher precision in calculating flex point intensities.

 Another area for improvement would be the approximation of the time when flex point

intensities occur. The best way would be to provide a timer for real-time control, while using

frame counts in some manner for off-line control. Lastly, the neutral face is learned in both the

untrained and the trained recognition phase. In order to maximize operability between

movements in the trained and the untrained parts of the recognition phase a single definition of

the neutral face needs to be defined and incorporated into an external file similar to the max file

format.

Bibliography

 [1] C. Mayer, S. Sosnowski, K. Kuhnlenz, and B. Radig, “Towards robotic facial mimicry:

system development and evaluation”, 19
th

 IEEE International Symposium on Robot and Human

Interactive Communication, 2010.

[2] D. Cristinacce, and T. Cootes, “Feature Detection and Tracking with Constrained Local

Models”,

[3] T. Baltrusaitis, P. Robinson, and L. Morency, “3D Constrained Local Model for Rigid and

Non-Rigid Facial Tracking”,

