
Coarse Grained Reconfigurable Architecture

Akeem Edwards

July 29 2012

Abstract:

This paper examines the challenges of mapping applications on to a Coarse-

grained reconfigurable architecture (CGRA). Through crowd sourcing through a

simple game and using the movement data from successful players the research

project plans to produce better mappings, or improve existing algorithms through

common patterns by the most successful players.

This paper also examines the case studies performed in this research project such

as improving an existing algorithm used to map graphs on a CGRA, and to be

compared to successful player graphs. This paper also examines a new game

types that models a heterogeneous CGRA.

Introduction

 Coarse-grained Reconfigurable Architectures (CGRA) have emerged as a

promising reconfigurable platform, by providing operation-level programmability,

wordlevel, datapaths, and area-efficient routing switches which is also very

powerful[1], also promising for achieving energy-efficient flexible designs for an

application domain. In order to use the CGRA’s for practical applications there is a

need for smart algorithms that are able to implement applications of interest

onto these fabrics. This research is focused on discovering new mapping

strategies for customized coarse-grained devices through crowd-sourcing. The

main thrust of this research is to develop a science game to discover better

mapping algorithms by making use of human intuition and ability to recognize

patterns and opportunities even in complex problems. Players are presented with

successively more difficult mapping problems in a game environment, and the

vast dataset of players’ moves is analyzed to recognize common patterns used by

successful game players. The insights gained from strategic moves humans make

while solving problems based on their visual intuition and experience can be used

to discover new mapping approaches that are beyond what can be conceived

with traditional algorithms. New energy-efficient architectures and mapping

algorithms that are developed in this research will spur development of a broad

range of portable/wearable computing applications critical to health, safety and

security, personal multimedia, and aerospace.

2. CGRA Architecture.

 A CGRA is basically an integrated circuit with an array of Processing Elements

(PE) such as arithmetic logic units. The PEs are connected with each other by

routing buses (figure 1), and thus a PE can use the results of their neighboring PEs.

CGRAs can fully exploit the parallelism in an application, and therefore they are

extremely well suited for the applications that require very high throughput [1].

Figure 1 illustrating a Coarse grained reconfigurable architecture

 This Research examines two types of interconnections between PE; the first

called the Stripe architecture PE are connected to each other through a

multiplexer, the second is called the Mesh architecture where the CGRA is

interpreted as a 2D mesh structure,

their neighbors figure 2

game. Each architecture has quite a few of variations represented in the game

that will be discussed later in this paper.

Figure 2 showing the different architectures represented in the game. The stripe architecture of

the left and the mesh on the right

 One essential component that is required to pro

is the compiler. The com

using the least amount of PE’s as possible on to the given architecture.

Figure 1 illustrating a Coarse grained reconfigurable architecture

Research examines two types of interconnections between PE; the first

tripe architecture PE are connected to each other through a

, the second is called the Mesh architecture where the CGRA is

interpreted as a 2D mesh structure, and as a result PE’s are directly connected to

 shows the representation of each architecture in the

. Each architecture has quite a few of variations represented in the game

that will be discussed later in this paper.

2 showing the different architectures represented in the game. The stripe architecture of

the left and the mesh on the right

One essential component that is required to provide great performance in CGRA

The compiler needs to be able to map applications onto a CGRA

using the least amount of PE’s as possible on to the given architecture.

Figure 1 illustrating a Coarse grained reconfigurable architecture [2].

Research examines two types of interconnections between PE; the first is

tripe architecture PE are connected to each other through a

, the second is called the Mesh architecture where the CGRA is

and as a result PE’s are directly connected to

shows the representation of each architecture in the

. Each architecture has quite a few of variations represented in the game

2 showing the different architectures represented in the game. The stripe architecture of

vide great performance in CGRA

map applications onto a CGRA

using the least amount of PE’s as possible on to the given architecture.

3. Untangled Game Project

 There are many compilers that are able to map applications onto a CGRA, but

many of the compilers are unable to map applications, even though a mapping

exists, and are using too many processing elements (PEs) to map an application,

mapping an application onto a CGRA to minimize the number of resources has

been shown to be NP-complete [1]. The research project has two main parts, the

first part is a web based game that allows players to solve graphs onto different

architectures, each graph representing an application to be mapped onto a CGRA,

and then analyzing that data. With these two objectives the major goal of this

project will be to compare algorithms generated from players to traditional

algorithms, and from these algorithms or common patterns generated from

players try to improve traditional algorithms.

 Players are presented with successively more difficult mapping problems in a

game environment; with each graph players are to try to shrink the graphs and to

reduce the length of connections between each node. Not only are players

reducing the sizes of each node but they will also have to abide to the

connectivity constraints (or rules) in each of the CGRA architectures also known as

violations. While players are busy playing the game their moves will be analyzed,

with successful players having their moves analyzed for common patterns.

Figure 3 an unfinished graph filled with violations

Figure 4 illustrating a finished graph with no violations

 The game provides players with two main architectures as discussed before the

stripe based architecture where nodes

the mesh architecture where the graph is interpreted as a 2D mesh structure.

Both stripe and mesh have

has another variation called DR for dedicated

transferring data). In the mesh architecture the player is presen

more variations such as the ability to for nodes to connect with other nodes

directly above, below to the left and right of them. This is called four way, other

an unfinished graph filled with violations

illustrating a finished graph with no violations.

The game provides players with two main architectures as discussed before the

stripe based architecture where nodes are connected through multip

the mesh architecture where the graph is interpreted as a 2D mesh structure.

Both stripe and mesh have many variations in the game. The stripe architecture

has another variation called DR for dedicated-pass-gates

. In the mesh architecture the player is presen

more variations such as the ability to for nodes to connect with other nodes

directly above, below to the left and right of them. This is called four way, other

The game provides players with two main architectures as discussed before the

are connected through multiplexors, and

the mesh architecture where the graph is interpreted as a 2D mesh structure.

. The stripe architecture

 (nodes used for

. In the mesh architecture the player is presented with a few

more variations such as the ability to for nodes to connect with other nodes

directly above, below to the left and right of them. This is called four way, other

variations come in the form of other nodes being able to hop or connect to nodes

two steps away from them (4 way 2 hop) figure 5 shows all the variations of the

mesh architecture represented in the game.

Figure 5 illustrating the variations of the mesh architecture in the game

4 Case Studies

 The rest of the paper will discuss the case studies performed during research.

Since this research is being worked on by a big team, only the case studies I

worked on will be covered. Some of the major case studies performed included

bettering algorithms used for mapping graphs that will be compared to successful

player’s graphs. The other major case study involved prototyping for a new game

type that models a heterogeneous CGRA, a new game type to study players

moves to be analyzed.

4.1 Simulated annealing placement

 Simulated annealing is perhaps the main algorithm compared to successful

player’s graphs. In this project we use simulated annealing as a good

approximation of graphs that use minimal resources on a CGRA. The next step is

to take these graphs and look for any improvements that can be made in each

graph. After improvements have been made, the cost function for the algorithm

was fine tuned to reflect each of the improvements noted which will provide a

next iteration which better paces graphs onto the grid or CGRA. The Simulated

annealing algorithm will not only have to place graphs as efficiently as possible

but will have to abide to the connectivity constrains or violations as well. Ideally

the algorithm will take a graph as input and given specific constrains output a

valid graph that also uses little resources as possible.

 The first iteration of the simulated annealing algorithm was performed on the

stripe architecture levels in the game and stored into a database. Then the

finished graphs of were loaded up and simple improvements were to be made on

each of the graphs which were little adjustments that could reduce the amount of

resources needed on a CGRA. Although the algorithm was able to perform some

valid mappings for a few graphs, there were some final graphs that were

produced with violations, and the algorithm also didn’t seem to produce graphs

with any width considerations or constraints. Figure 6 shows an example of the

final graph as an output

Figure 6 output of simulated annealing graph results on the left along with improvements made

on the right.

 To measure the performance of this algorithm each cell in the grid will be

interpreted as a processing element. In this case reach the final mapped graph

will be using a 6 x 9 area a total of 54 PE’s, compared to the improved version

(figure 7) which is using an array of 5 x 10 or a total of 50 PE’s. Table 1 shows a

comparison between the area of simulated annealing algorithm graph and the

improved version graphs for all the levels in the game. In some levels such as the

previous graph examined the improvements were minimal while there are others

that had huge improvements that were done to them, and finally there were only

two where there wasn’t any improvement available.

Level

Amount of

nodes

Simulated

annealing results

Improved

results

Encoder 36 144 112

Decoder 29 98 65

Gsm 28 90 90

idct col 61 144 144

idct row 52 120 110

Laplace 29 96 72

Sobel 24 54 50

Table 1 showing a comparison between the simulated annealing algorithm graphs and the

improved versions.

 The next iteration of the simulated annealing algorithm was deployed onto a

variation of the mesh architecture 4 way 1 hop. In this setup each node has access

to the neighboring nodes from above, below, left and right of it, and is able to

access nodes one node a away from the same direction as well. For this

experiment we first ran the new and improved cost function several times on

each level, with the results we recorded the best, worst and the average cases.

For each case recorded each graph was examined for small improvements that

could be made to reduce the amount of resources needed. With the new cost

function there were much less recorded violations that the previous iteration and

the reduction of resources need in the graph was also reduced as well. At the

algorithms best there were no improvements that could be performed to reduce

the area of the graphs on the grid for any level in the game. On average and worst

cases there were only two levels that allowed for improvement.

4.2 Heterogeneous prototype

 The next major case study performed in the research was prototyping for a new

game type that models a different version of a CGRA. As explained before a CGRA

is made up of an array of PEs, one assumption that is given to players is that every

processing element will be able to provide any operation given to them. This type

of CGRA is considered a Homogenous Architecture every Processing element is

identical to the other, the next major step in this project has been to model a

Heterogeneous CGRA where different PE’s provide different operations.

 This prototype uses the same graphs as the homogenous game type as well as

the same operations. The CGRA in this prototype distinguishes between two types

of operations multipliers and non-multipliers (Multiplication is an expensive

operation and is separated from the rest). In this experiment each level is given a

fixed amount of multipliers on each row. Each node is drawn with a symbol of its

operation, and different colors depending on the type of operation required. For

the prototype nodes requiring multiplication are drawn in green, while the rest of

the nodes are drawn orange (later in the prototype design red). The Grid also has

also been changed to reflect this new architecture as well, with columns that will

be able to provide multiplication in green and the rest in red as well. Figure 7

shows the new game type designed in the prototype. The architecture in the

prototypes is based off of the variation of the mesh architecture 4 way 2 hop.

Players are only able to place nodes in the correct cells of the grid (for example

green nodes can only be placed in green columns).

 Figure 7 illustrating the prototype for the heterogeneous architecture

at every 5 interval.

With this new game type there is also a greater diff

this new game type. Part of creating this new prototype was to measur

difficulty curve associated with the increase in difficulty level, by experimenting

with the amount of intervals a multiplier column will appear. The difficulty level

seems to be unbearable with more multiplier columns provided. This is a result of

less space being provided to non

connections between nodes.

trating the prototype for the heterogeneous architecture a multiplier row

With this new game type there is also a greater difficulty curve associated with

this new game type. Part of creating this new prototype was to measur

difficulty curve associated with the increase in difficulty level, by experimenting

with the amount of intervals a multiplier column will appear. The difficulty level

be unbearable with more multiplier columns provided. This is a result of

ess space being provided to non-multiplier nodes which stretches the

connections between nodes.

a multiplier row is given

iculty curve associated with

this new game type. Part of creating this new prototype was to measure the

difficulty curve associated with the increase in difficulty level, by experimenting

with the amount of intervals a multiplier column will appear. The difficulty level

be unbearable with more multiplier columns provided. This is a result of

ier nodes which stretches the

Conclusion

A lot of lessons have been learned while working on this project, and although

there are not any results ready for the final project, there have been many

milestones that have been made through the work of major case studies

performed a great framework has been laid out for the final project to achieve

the final goal of the project.

References

[1] W. Yoon, A Shrivastava, S Park, M Ahn, and Y Paek. A Graph Based Spatial

Mapping Algorithm for Coarse-Grained Reconfigurable Architectures. IEEE

Transactions on Very Large Integration (VLSI) Systems. 1565 – 1578 November

2009.

[2]Coarse-Grained Reconfigurable Architecture. Compilers Creating Custom

Processors(CCCP) http://cccp.eecs.umich.edu/research/cgra.php

