
The Unpredictable Attacker

Does the “Honeymoon Effect” Hold for Exploits?

Rebecca Gelles

University of Pennsylvania

Project in Collaboration with:

Matt Blaze Sandy Clark

Abstract:

 The goal of the research presented in

this paper is to expand on research which

examines the time it takes for new security

vulnerabilities to be discovered after a new

release of a computer program. In

particular, this research seeks to build upon

previous research examining time from

release to vulnerability discovery by doing

additional research into the time from

release to exploitation, in order to test

whether the previously discovered pattern

holds. To do so, it is necessary to discover

when new vulnerability exploits are created,

which is no easy task. Unfortunately,

because of the nature of exploit data, to this

date we have been left only with new

questions to answer. As such, the approach

of this paper will be to discuss research

methods tried thus far, problems

encountered, and ideas for continuing

research, rather than on data analyses and

conclusions.

Introduction:

 One of the most difficult problems in

the area of computer security is that it is at

this time extraordinarily difficult, even

impossible, to know whether a program is

secure or even whether it is secure enough to

be released. As such, program creators must

be constantly aware of the possibility of new

attacks, and data is always at a major risk of

being stolen. This problem also makes it

difficult for security specialists to find

effective monitoring solutions—if you

cannot predict when behavior will occur,

you must either be constantly vigilant or risk

a successful attack. And constant vigilance

can be costly. Thus, knowing how long it

takes for vulnerabilities in programs to be

discovered and exploited can be a very

effective tool in computer security.

 For a long time, security

vulnerabilities have been assumed to behave

in the same manner as other computer bugs,

and have thus been approached in the same

way. However, recent research indicates

that this may not be the case. In fact, where

the number of new bugs found in software

has been shown to be high initially and

decrease as time goes on, it appears that the

number of vulnerabilities found in programs

show a pattern almost directly opposite that

of bugs. That is, initially vulnerabilities are

found slowly, but as time goes on more and

more are uncovered.

 Unlike other bugs, which are

themselves inherent problems within

software that need to be fixed,

vulnerabilities are only problems within the

context of exploits: if an exploit that takes

advantage of a particular vulnerability can

be or has been developed, that vulnerability

becomes dangerous. Thus, it seems

important to also examine the time it takes

for exploits to be discovered, rather than

vulnerabilities alone. This raises the

question of what the lifecycle is of software

with respect to exploits themselves, rather

than to vulnerabilities, and the related

question of the time link between the

discovery of a vulnerability and the

development of an exploit.

 One of the most significant problems

faced in a task such as this is effective data

collection. Gathering data about

vulnerabilities is, while not easy, not

extraordinarily difficult, as there are

websites like BugTraq that carefully record

all discovered vulnerabilities. However,

gathering data on exploits is inherently

difficult because, while some exploits are

developed by legitimate employees in the

security field trying to test their systems in

order to improve them, and others are

created by curious individuals who want to

know if they can, some exploits are created

by criminals, and, as such, are not likely to

be shared. This means that gathering data

on when they were created is difficult. As a

result, one of our goals has been to learn

enough about the patterns of exploit-creators

to figure out whether the unshared exploits

are likely to have been created around the

same time as the shared. But this is no easy

task, and so even after ten weeks of work

and significant amounts of data collection,

we have been left with no clear results.

Background:

 Since the release of the important

book, “The Mythical Man-Month” [2], it has

been well-established that program errors

are found in high frequency shortly after the

release of the program, but see their

frequency of discovery decrease as time

goes on. Although bugs continue to be

found, at a certain point the rate of discovery

is deemed low enough for the software to be

released. In fact, this model is the basis for

Software Reliability models.

 However, although for a long time

security vulnerabilities were just considered

a specific type of bugs, recent research

indicates that this may not be the case. In

the paper “Familiarity Breeds Contempt:

The Honeymoon Effect and the Role of

Legacy Code in Zero-Day Vulnerabilities,”

[1] produced by my mentor, Matt Blaze, and

others, the authors argue that vulnerabilities

actually display a far different pattern of

discovery that other bugs, and that programs

experience a “honeymoon period” where no

vulnerabilities are found, and then new

vulnerabilities start to be discovered

gradually, with the pace increasing as time

goes on. However, their research in this

area is limited in a few ways that new

research found in this paper hopes to

address: first, that they only consider the

first few vulnerabilities discovered, and so it

is unclear whether this pattern continues, or

whether eventually new vulnerabilities cease

being discovered or are discovered at a

slower rate; second, that they focus on the

time to discover vulnerabilities after release

but not the related time to exploit

vulnerabilities after release; and finally, that

it does not attempt to gather data specifically

based on attacker, focusing instead on more

easily found data produced by outside

observers and legitimate security companies.

The research found herein aims to fill in

these crucial gaps.

 In aid of the final point, it is helpful

to gain a more thorough understanding of

both how attackers behave and what

motivates attacker behavior. To this end,

the book “Kingpin,” [6] one of the most

thorough analyses of the criminal world on

the internet, is an especially valuable

resource. In particular, it notes how most of

the data theft was achieved by just a few

criminals and then sold to others around the

world, and how the methods of gathering the

data used by these criminals were generally

the same exploits that they employed for

long periods of time, or, when those failed,

new exploits taking advantage of the same

vulnerabilities. This insight raises

interesting questions, such as whether the

work that goes into preventing

vulnerabilities is worth the effort. The

researcher in “The Honeymoon Effect” [1]

found that quality of code appeared to have

no impact on the rate of vulnerability

discovery, and, in fact, that well-tested

legacy code was even more dangerous. This

might lead one to wonder whether it is

entirely necessary to attempt to produce

secure code initially, or if resources should

instead be directed towards figuring out

effective patches once a vulnerability is

known. If it is true that, as in “Kingpin,” [6]

attackers frequently reuse known attacks and

vulnerabilities, making patches which cut

off their current method of entry might be

more useful than trying to prevent them

from finding a new method. Doing

otherwise might be similar to building ten

more feet of wall around a castle when the

invading army got in through the drains still

leading in from the outside: it might make

you feel secure to prevent the attackers from

coming up with a new mode of attack, but

they are more likely to stick with the method

that they know is effective.

 Prediction of attacker behavior can

also be enhanced by understanding the

general interplay between attacker and

defender, even in areas beyond computer

security. One paper whose research finds

attack-response patterns similar to those

seen in computer security is “Pattern in

Escalations in Insurgent and Terrorist

Activity,” [4] which studies, in the context

of the military situation in Afganistan, the

case in which a less institutionalized

“insurgent,” which could be considered

similar to cyber criminals, adapts more

quickly than the organized but less adaptive

respondents (here, probably security

specialists and law enforcement) and

manages to have an advantage despite being

apparently weaker.

 “The Honeymoon Effect” [1] is not

the only paper to examine this problem of

discovery rate of security vulnerabilities. In

“Milk or Wine: Does Software Security

Improve with Age?” [5] researchers

examined both when security vulnerabilities

were found in OpenBSD and whether these

vulnerabilities were found in foundational,

“legacy” code. They found that, in general,

many of the vulnerabilities were from the

foundational code. They posited a number

of explanations for this, including that the

newer code was better and more secure or

that there had simply been more time to

examine the old code. However, they also

acknowledged that the percentage of

vulnerabilities found in legacy code was

proportional to the percentage of legacy

code still in use as compared to newer code.

Still, this result seems initially

counterintuitive in the “vulnerabilities are

bugs” scenario: presumably, bugs have been

found and fixed, and so older code would

actually be more secure, as it would have

been tested and patched more times than

other code. Unfortunately, since this paper

focuses exclusively on OpenBSD, it is

impossible to know if we can extrapolate

these results to the more general scenario,

especially considering OpenBSD places an

especially strong focus on security.

Data and Analysis:

Since the data gathering was still in process

and the data interpretation had barely begun

at the time my portion of the project was

completed, it is difficult at this point to show

what has been found, and what the data

show. However, I will endeavor to discuss

at this point the data retrieval process and

what data has thus far been found.

 The first data retrieval process

involved both updating the data used in the

paper “The Honeymoon Effect” [1] and

rendering future updates unnecessary. The

information in question is a list of

vulnerabilities in various programs found on

the website Security Focus [7]—a website

that the researchers in “The Honeymoon

Effect” [1] had found to be very useful, as it

contained both government-collected data

and additional entries collected from other

sources. The previous data retrieval

mechanism was a two-part web scraper

program which first collected the links to

each entry on the website, and then collected

individual portions of the data from each

linked entry. However, the program created

a new database each time, rather than simply

updating the previous one with new entries,

which both disrupts the data interpretation

process and takes far too long—the program

literally took days to run, as it had to visit

over 50000 separate web pages. To solve

this problem, my goal was to create a

version of the program that simply updated

the previous list, so that whenever the

program was run the data would be up-to-

date. As I had never worked with a web

scraper before, figuring out the most

effective mechanism to do this was

surprisingly difficult.

 Next, the goal was to make this

updating process occur daily and

automatically. For this endeavor, I had to

learn how to write a bash script which would

run the programs, and then write a cron job

which would run the bash script daily. Now,

finally, the update process was automated

and consistent, and it was time to gather the

additional data from new sources needed for

the new focus of the research on exploits.

 Unfortunately, attackers don’t

exactly publicize it when they create a new

successful exploit, as letting the program

creators know that the problem exists would

allow them to patch it, cutting off their new

source. Luckily, there exists the field of

penetration testing, where defenders mimic

attackers and seek to exploit security

vulnerabilities in a system in order to help

programmers figure out what they need to

fix. Their behavior may not be exactly like

that of normal attackers, but hopefully it will

be similar enough to approximate attacker

behavior. One good source of data from

both penetration testers and another group of

people—those who like to break into

programs for fun but do not use what they

find maliciously—is known as Metasploit,

which is a program full of already-created

exploits that can be used to get into systems.

Fortuitously for our purposes, each

Metasploit exploit module includes its date

of creation. Even better, it contains the

identification number of the vulnerability it

exploits, the same number found in the

Bugtraq databases. To take advantage of

this source, I created another web scraper to

pull this data.

 Metasploit also contains the date the

vulnerability was discovered, which created

a new problem: occasionally the Metasploit

and Security Focus [7] data disagreed. And

due to the form the data was in, it was too

difficult to try to compare these

automatically, and an automatic comparison

might not have provided us with a reason

why the sources disagreed. So a manual

comparison was necessary instead.

 In the course of this research, we

noticed that the speed of discovery of the

first vulnerability, and first exploit, were

both increasing as time went on; that is, the

“honeymoon period” was getting shorter.

One goal of our research, then, was to figure

out why. One posited reason was that there

were simply more people working on

exploits now than there were previously. In

order to make an attempt to test this

hypothesis, I created a program to tell me

more about the Metasploit module authors:

how many there were, how many exploits

each had created, when each had started, and

what kind of modules (modules were based

on what kind of operating system the

vulnerabilities were found in, what the line

of attack was, etc.) they worked on. The last

turned out to be relatively irrelevant,

because for most Metasploit authors who

had created more than one exploit, almost all

of them had created exploits for multiple

modules.

 The data found in this process was as

follows:

exploits

written

authors with

this total

yr of

first

yr of

last

>20 4 2005 2011

15-20 1 2011 2011

10-14 2 2007 2011

5-9 13 varies varies

This is a very rough approximation.

Essentially, most of the exploits were

written by the same four authors, all of

whom had been writing from the creation of

Metasploit in 2005 to the present. The only

other author with more than 15 exploits had

written all of them in 2011. There were two

more who had written a significant number,

both beginning in 2011. Of those who had

written at least five, the threshold I set for

whether finding exploits was something they

were particularly interested in, and thus

whether they were likely to be working on

finding exploits for any given program, and

as a result have an impact of the rate of

exploit discovery, many had begun early but

stopped writing, and many had only begun

recently. The information obtained was

unclear.

 There were two particular problems

with the data. First, anything created for

Metasploit was likely not to entirely reflect

the attacker market, both because the

Metasploit authors were generally not the

same people as the attacker, and because the

people writing exploits for Metasploit were

writing specifically for Metasploit, and so

the number of authors was limited. Second,

on Metasploit if an exploit has already been

discovered there is no way to tell if another

person was discovering it separately. This

latter point is important: for example, it is

possible some of the authors who appear to

have stopped writing may have continued to

search for exploits but have gotten slower

than others searching, and are thus never fast

enough to be the author of new exploits. In

addition, the sample size of the data appears

to be too small to be useful.

 However, looking back at the black

market seen in “Kingpin,” it is unclear

whether these problems are actually real. In

particular, “Kingpin” describes a world in

which a very small group of attacker churns

out most of the exploits that exist. This

actually seems to be reflected in the

Metasploit data. So perhaps what seem to

be problems are just reflections of the nature

of the field.

Conclusion:

Unfortunately, at the time my component of

this research project was completed, we had

not reached any true conclusions, or

completed any careful analysis, or even

completed the data collection process.

Instead, we had simply discovered more

questions that needed to be answered.

Further steps in the research that need to be

taken are a comparison of program release

dates to exploit discovery times, a more

thorough analysis of the exploit authors

data, and an additional attempt to delve into

data about the attackers themselves rather

than simply a subsection of penetration

testers. Hopefully, this additional research

will be able to shed light on this highly

complicated problem.

Acknowledgements:

I would like to thank the DREU program for

making this research experience possible

and for helping me connect with my mentor,

Professor Matt Blaze. I would also like to

thank Carleton College’s Robert J.

Kolenkow and Robert A. Reitz fund for

helping me to even consider such a project,

and for providing the initial funding to make

the experience possible. I would of course

like to thank my mentor for all of his help

throughout the summer, and for making sure

to choose a project that allowed me to

actually feel like I accomplished something

despite my relative lack of familiarity with

the field, and his graduate student Sandy

Clark for helping to answer all of my many

questions and provide suggestions and

guidance when necessary. I would finally

like to thank all of the graduate students in

the Distributed Systems Laboratory for

being willing to talk to me about anything

and making this a really wonderful summer

experience.

References:

[1] Matt Blaze, Sandy Clack, Stefan Frei, and

Jonathan Smith. Familiarity Breeds Contempt:

The Honeymoon Effect and the Role of Legacy

Code in Zero-Day Vulnerabilities. In

Proceedings, 26th Annual Computer Security

Applications Conference, pages 251-260, 2010.

[2] Frederick P. Brooks. The Mythical Man-Month:

Essays on Software Engineering, 20th

Anniversary Edition. Addison-Wesley

Professional, August 1995.

[3] CVE. Common vulnerabilities and exposures,

2011.

[4] Neil Johnson, Spencer Carran, Joel Botner, Kyle

Fontaine, Nathan Laxague, Philip Nuetzel,

Jessica Turnley and Brian Tivnan. Pattern in

Escalations in Insurgent and Terrorist Activity.

Science, 333(6038):81-84, July 2011.

[5] Andy Ozment and Stuart E. Schechter. Milk or

wine: does software security improve with age?

In USENIX-SS’06: Proceedings of the 15th

conference on USENIX Security Symposium,

Berkeley, CA, USA, 2006. USENIX

Association.

[6] Kevin Poulson. Kingpin. New York: Crown

Publishers, 2011

[7] Security Focus. Vulnerabilities Database, 2011.

