
Explaining the difference between event-based and
procedural programming to non-programmers.

Kendall Park
August 20, 2010

Abstract

Interactive therapy games remain an untapped yet promising resource for therapists.
One of the greatest challenges in using games for therapy remains the vast array of
unique needs ranging over the patients. Caitlin Keheller's Alice-based software offers to
help bridge the gap between therapists and programmer so that therapists can create
games uniquely tailored to each patient. There are many challenges to overcoming the
coder to non-coder gap such as the distinction between programming topics such as
event-based and procedural programming. This paper offers a qualitative analysis of our
findings from four user tests and the measures we took to help distinguish the
aforementioned topic.

Introduction

Wii-like interactive games have demonstrated great promise in the realm of
rehabilitation, creating a fun, motivating environment for patients to perform therapy
exercises.i Our target audience, stroke survivors, differ dramatically in rehabilitation
needs, therefore a generic therapy game cannot hope to envelop such unique needs of
stoke survivors. On the flip side, freelancing programmers to create individualized
games consumes extensive amounts of time--and therefore money.

What are the alternatives? The average therapist lacks the programming knowledge to
create robust rehabilitation games. It is this gap that the Stoke Therapy Games
research project attempts to bridge. By creating a free, non-coder-friendly environment
in which therapists can rapidly develop therapy games, the large time and monetary
costs of game development can be cut. In the future, we hope to achieve an ease of
development that allows occupational and physical therapists the freedom to quickly
customize their games to the individual case of each stroke survivor. ii

The Stroke Therapy Games project functions as an extension of Caitlin Kelleher's
Looking Glass, the successor of Storytelling Alice, which aims to teach programming to
middle school aged children. Looking Glass creates an environment that prohibits
syntax errors and constructs three dimensional representations of objects. A user of
Looking Glass will use drag and drop features to “program” actions for their own three
dimensional worlds in order to create a story.

Problem

One of the largest problems we encountered during the user test was explaining the
difference between the abstract constructs of “actions” and “events.” In the Stroke

Therapy Games project, “actions” represent a singular occurrence of a specific behavior
such as “moveForward” or “jump”. Actions are executed in a predetermined order, from
the start of a game. Events consisted of an situation-reaction pair that could occur at
any time during the game, when certain environmental factors match those of the
situation. One could create an event that caused a rabbit character to turn green
whenever it collided with a carrot during the game. In programming terms, events are
analogous to adding a listener to a program, whereas actions are similar to statements
in a method (such as the main method).

However, our target audience of stroke therapists do not posses the computer science
background that recognizes the distinction between procedural and event-driven
behavior. Finding a way to communicate the difference between those two abstract
concepts drove much of user test-driven development in the teaching elements and
interface design.

It is important to note that the original Looking Glass program does not draw a
distinction between these two concepts. Because Looking Glass intends for the creation
of stories as opposed to games, the majority of the user-programmed behavior is
procedural. Games, on the other hand, are driven by nondeterministic interaction with
the user and therefore require event-based programming. During preliminary user
studies, therapists described games in terms of an reactions (“if this, then that”) more
than in-order activities (“first this, then that”).i

Methodology

Eight graduate students in the Washington University School of Occupational and
Physical Therapy were recruited to perform our user-tests (seven female and one
male). In each three-hour session a pair of therapists were given a description of a
fiction stroke victim as well as blank paper and asked to brainstorm a game for that
particular victim. After they decided on the structure for a therapy game they were
introduced to our program and given the tutorial (in later sessions they would also be
lead through a Stencils-based tutorial). We tried to intervene as little as possible so as
to observe the largest points of frustration. Each session was video-taped so we could
further review the proceedings and also perform language analysis (what words they
often used to describe aspects of the game or program). When the users had
successfully created a game or sufficient time had passed, we asked the therapists to
comment on their experience and offer suggestions for improvement to our program.

Exploring the Solutions

In our Stroke Therapy Games project, we identified two primary methods to aid users in
discriminating between actions and events: the learning materials provided to the
therapists with the program, and also the interface of the program itself--what is
explained to the user, and what is self-explanatory. This section summarizes the
iterative changes that took place as we continually adapted the software in response to
the user-tests conducted. The data gathered was primarily observation and qualitative
analysis of the users responses. Not enough user-tests were conducted to produce
enough data for quantitative analysis, nor was program presented to the users identical

between each study, as we were constantly developing and refining features based on
the previous test.

Tutorial

Our first version of the tutorial consisted of a stapled packet of paper that led the user
through the general process of creating a game through text and illustrations. The
tutorial presented actions before events, with the rationale that actions are inherently
simpler to comprehend than events and therefore should be introduced first.

In the first user-study, it became clear that introducing actions before events only
caused confusion to the therapist as the user transitioned from actions to events. The
tutorial was modified for the subsequent studies, drawing out the actions section of the
tutorial and placing it in an appendix. It became clear that it was possible to create a
game based entirely on events, and the procedural actions would only be used for
setting up the initial conditions of the game.

A crucial aspect of explaining actions and events rested in the terminology used to
describe events. We experimented with terms such as “action-reaction pairs,” “triggers
and consequences,” or “situations and reactions.” We decided that “situations and
reactions” best conveyed the setting up an event, but left the subject open to the results
of our experimentation. (See figures 1 and 2 for further explanation.)

The major tutorial revision was made when we started switching over to a Stencils-
based tutorial. The Stencils-based tutorials are an in game tutorial first engineered by
Caitlin Kelleher to explain the concepts of Storytelling Alice to the user. iii Stencils is an
virtual tutorial that creates an overlay over the program, guiding the user through a
series of tasks used to introduce the program's features. Because the stroke therapy
branch of Looking Glass required the use of many new interface features, the version of
Stencils used with Looking Glass was not entirely compatible with our program. Some
version of Stencils was used for the last three user-tests, slowly replacing the paper
tutorial as we adapted more our program's features to support Stencils. By the last two
tests, Stencils had become the primary source of instruction, with the paper tutorial
used only as a reference if needed.

Interface

Deviating from the Looking Glass structure, we created a separate Events Tab next to
the Run Tab in the user interface. This was where most of the programming would take
place. Our biggest issue initially was drawing attention to this tab. When the program
was loaded, the Run Tab, like in Looking Glass, loaded out as the primary open tab.
Users had difficulty finding the Events-tab, even when aided by the tutorial.

We decided that the interface needed an overhaul to better support the new features
such as the Events Tab. To explore new interface designs we created several paper
versions of interface, and experimented with their usability. Paper prototyping offers an
time-efficient, inexpensive, and tangible way to determine the practicality of different
interface designs.iv From these prototypes we opted to distinguish the Events Tab by
changing its color from that of the Run Tab. We also altered the interior to reserve a

space for each in-game object's events. Actions and Events commands were also
separated into their own private sections (as they used to be together).

From later tests we noticed that when the users added many objects to the game, the
Events Tab would become unnecessarily crowded (as most of those objects did not
have any events associated with them). In response, we changed the Events Tab so
that it did not automatically include sections for each object's events but only added
them when an object specific “Add [Object Name]'s Events” button was pressed. This
cleared up the Events Tab so that the user would not get bogged down searched for a
particular object's event section.

Conclusions

From our preliminary user tests, many alterations were made to increase the
responsiveness of non-programmers to highly-abstracted concepts of programming.
One of the major challenges was creating a distinction between event-based and
procedural programming, something that coders, after years of experience, often take
for granted. Our tutorial evolved from a paper-based instruction manual to an interactive
Stencils-based tutorial, focused primarily on events instead of actions. The interface,
especially the Events Tab, was modified to draw attention to differences between events
and actions through color and layout. Because these were user-tests early in the
decision, the program was rapidly altered from one test to another based on the
response of each pair of therapists.

Future Work

My summer's research illustrates positive progress towards the use of video-games for
stroke rehabilitation. Game-based therapy is a vast, virtually untapped resource for
therapists, but bridging the gap between programmer and therapists offers the greatest
challenges before widespread implementation of programs such as our Looking Glass-
based game creation software. Further research topics could include the necessity of
therapists as programmers, the effectiveness of 3D environments for stroke therapy
games (as opposed to 2D environments), and the level of abstraction necessary to
guise programming topics such as events and actions into modules understandable to
the non-coder.

Acknowledgements

I would like to thank Tracy Camp and the CRA-W for this DREU experience, Dr. Caitlin
Keheller for her mentoring, Matt May for being such a great partner, and the rest of my
labmates for their support: Paul Gross, Kyle Harms, Jordana Hodges, Jennifer Yang.

Figure 1. Composition of an event.

Figure 2. Situation and reaction.

i Alankus, G. R. Proffitt, J. Engsberg, C. Kelleher. Stroke Therapy through Motion-Based Games: A Case Study,
Proceedings of ASSETS 2010

ii Alankus, G. M. May, A. Lazar, C. Kelleher. Towards Customizable Games for Stroke Rehabilitation. Proceedings
of CHI 2010, pages 2113-2122

iii Kelleher, C. and R. Pausch. Stencils-based tutorials: design and evaluation. 2005 Conference on Human
Factors in Computing Systems, pages 541-550

iv Snyde, C. Paper prototyping: The fast and easy way to design and refine user interfaces. 2003 Morgan Kaufmann Pub

	Explaining the difference between event-based and procedural programming to non-programmers.
	Abstract
	Introduction
	Problem
	Methodology

	Exploring the Solutions
	Conclusions
	Future Work
	Acknowledgements

