
Core

ARM7
CPU

L1 Cache

Scratch-
pad

Mem

Transactional
Log

TC/VC

Filter
Cache

Snoop
Device

Bus Access

Tx
Private
Data –
Read,
Write

Tx
Shared
Data

Write to log,
Read from
filter

Filter Cache
DynamicStatic

Read

Line

replacing

in cache

valid?

Check

line

state

Put address in

the filter cache

Write address on

current line and

data to the log

Done
Miss

Yes

00
10

No

Hit Write

Write address

and data to the

log

Check

line

state

Done

Hit Miss

00

10

Core

ARM7
CPU

L1 Cache

Scratchpad
Memory

TC/VCSnoop
Device

Bus Access

Tx
Shared
and
Private
data

Logging Scheme
• The log is stored on the scratchpad memory.

• We only store private data and addresses on the log – shared data remains in the

transactional cache.

• Each time we are in a transaction and we store (write) a private address, we save

the private data to the log at a given index and increase the index.

• On a commit, reset the log index to 0, quickly discarding all saved data.

• On an abort, write the contents of the log back to memory, starting at the index, or

the top of the log.

• Address distributions show that logging can be more efficient by only storing each

address once

Private Address Data

Private Address Data

0

2

4

6

8

10

12

3
ff

f3
0

3
ff

f3
4

3
ff

f3
8

3
ff

f3
c

3
ff

f4
0

3
ff

f4
4

3
ff

f4
8

3
ff

f4
c

3
ff

f2
4

3
ff

f2
8

3
ff

f1
0

3
ff

f1
4

3
ff

f1
8

3
ff

f1
c

3
ff

f2
0

3
ff

ef
4

3
ff

ef
8

3
ff

ef
c

3
ff

f0
0

3
ff

f0
4

3
ff

f0
8

3
ff

f0
c

3
ff

ee
c

3
ff

ef
0

3
ff

ee
0

3
ff

ee
4

3
ff

ee
8

3
ff

ed
4

3
ff

ed
8

3
ff

ed
c

3
ff

ec
8

3
ff

ec
c

3
ff

ed
0

3
ff

f2
c

A
ve

ra
ge

 W
ri

te
s

p
e

r
Tr

an
sa

ct
io

n Genome Address Distribution

0

1

2

3

4

3
ff

fb
4

3
ff

fa
0

3
ff

fb
0

3
ff

f8
8

3
ff

f9
8

3
ff

f7
8

3
ff

f5
c

3
ff

f6
c

3
ff

f4
0

3
ff

f5
0

3
ff

f2
0

3
ff

f3
0

3
ff

f0
0

3
ff

f1
0

3
ff

ee
0

3
ff

ef
0

3
ff

ec
0

3
ff

ed
0

3
ff

ea
0

3
ff

eb
0

3
ff

e8
0

3
ff

e9
0

3
ff

e6
0

3
ff

e7
0

3
ff

e4
0

3
ff

e5
0

3
ff

e2
0

3
ff

e3
0

3
ff

e0
0

3
ff

e1
0

3
ff

d
e0

3
ff

d
f0

3
ff

d
c0

3
ff

d
d

0

3
ff

d
a0

3
ff

d
b

0

3
ff

d
8

0

3
ff

d
9

0

3
ff

d
6

0

3
ff

d
7

0

3
ff

d
4

0

3
ff

d
5

0A
ve

ra
ge

 W
ri

te
s

p
e

r
Tr

an
sa

ct
io

n

Patricia Address Distribution

Architecture Overview
• Diagram shows a 4 core architecture

• Each core has an ARM7 CPU

• Each core has a 4KB 1-way L1 instruction cache

and a 1 KB 1-way data cache

• The transactional cache (TC) is 512 B

Core Architecture without Logging Scheme
• All private data is read and written to and from the L1 cache and the transactional cache

or victim cache.

• The scratchpad memory is only used to store registers saves registers before a

transaction

Core Architecture with Logging Scheme and
Filter Cache
• Transactional log is located on the scratchpad memory.

• The Filter cache is a direct-mapped cache because we need fast lookup time

• Read and write signals for private data go to the scratchpad memory and the filter cache

to determine data to be written to the log

• Filter cache is a direct-mapped cache due to need for fast look up

• Only read and write signals for shared data are on the transactional cache

Introduction
Transactional memory is a speculative scheme used for managing memory contention in multiprocessing systems. In hardware transactional memory, we

can use a transactional cache to store all original copies of data modified during a transaction and the modified data. In case of data contention among

processors, we must abort, or revert each thread back to its original state using the original data we stored in the transactional cache. Unfortunately, the

transactional cache consumes approximately 30% of the total energy used during execution, partially due to storing two copies of data. The transactional

cache also frequently overflows, causing serialization and slower execution.

We are proposing the use of a transactional logging scheme to move private data out of the transactional cache. In the transactional logging scheme, we

only need to save the original copy of private data in case of contention. By reducing the amount of data stored on the transactional cache, we aim to

reduce overflows and energy consumed. The transactional logging scheme is more efficient than the transactional cache because it is a simple stack. We

can improve the efficiency of the log by keeping track of the types of accesses we make to private data and only storing the addresses and data that we

need. To do so, we use a filter cache. The filter cache understands accesses to memory, so it can estimate if we will need to restore the data. Preliminary

results show that the logging scheme is promising and may reduce power while retaining performance.

• Only stores addresses written to the log.

• We only need to store an address on the log once, since we only need

to restore the original copy of data

• We check the filter cache before we write any data to the log and

do one of two things:

• The address is in the filter cache: Don’t write the

address to the log

• The address is not in the filter cache: Store the

address in the filter cache and write the address to

the log

Index

• Only stores addresses that are read from memory.

• If we only write data to an address during a transaction, we do not need

to save that address and data because the data is not used by other data

during a transaction. We only need to store addresses that have been

read and are then written later on in the transaction.

• In the dynamic filter cache scheme, we use two bits to identify the data

stored in a cache line.

• 01 indicates that a line is invalid.

• 00 indicates that the line has been read, but not written.

•10 indicates that the line has been written to the log.

Write

Miss

Hit

Done

Read

Done Put address in

the filter cache

Write address

and data to the

log

Results
Benchmarks
• Patricia (MiBench): Patricia Trie structure

used to match IP address prefixes

• K-means (STAMP): Partition-based program

commonly used in image filtering

• Skiplist (STAMP): Uses a skip-list data structure,

commonly used in memory management

applications

• Genome (STAMP): Gene sequencing program

• Vacation(STAMP): Travel reservation system that

is non-distributed

Analysis
• Preliminary results show a decrease in overflows,

and a slight decrease in execution cycles

• With more extensive simulation with a broader

range of benchmarks, we expect to see better

results. In particular, genome and vacation may

benefit more from this logging scheme since they

contain longer transactions, and therefore store

more data in the transactional cache. This should

lead to more opportunities to move data to the log.

• Kmeans may show strange results - it has short

transactions and spends little execution time in

transaction.

• Skiplist does not abort and also rarely uses the log.

L. Emurianᵃ, C. Ferriᵇ, R. I. Baharᵇ, T. Moreshetc, M. Herlihyᵇ
ᵃHamilton College ᵇBrown University cSwarthmore College

L1 TC

Core

L1 TC

Core

L1 TC

Core

L1 TC

Core

Private Mem Private Mem Private Mem Private Mem Shared Mem

Bus

Bus Master Bus Master Bus Master Bus Master

CPU CPU CPU CPU

0

0.05

0.1

0.15

0.2

0.25

n
o

-f
ilt

er

n
o

-f
ilt

er

d
yn

am
ic

st
at

ic

n
o

-f
ilt

er

n
o

-f
ilt

er

d
yn

am
ic

st
at

ic

no-log txlog-private no-log txlog-private

1 4

patricia

0

64

256

Overflow
Rate

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

1 4 1 4

patricia skiplist

no-filter - 0

dynamic - 64

dynamic - 256

static - 64

static - 256

System
Energy

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

n
o

-l
o

g

tx
lo

g-
p

ri
va

te

4 4

patricia skiplist

no-filter - 0

dynamic - 64

dynamic - 256

static - 64

static - 256

Execution
Cycles

0

500

1000

1500

2000

2500

3000

n
o

-f
ilt

er

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

n
o

-f
ilt

er

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

n
o

-f
ilt

er

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

0 64 256 0 64 256 0 64 256

4 4 4

kmeans patricia skiplist

Avg R

Avg W

Max R

Max W

Transactional Log Usage

0
10
20
30
40
50
60
70

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

d
yn

am
ic

st
at

ic

64 256 64 256 64 256

4 4 4

kmeans patricia skiplist

Avg Lines

Max Lines

Min Lines

Filter Cache
Line Usage

References

Cesare Ferri, SamanthaWood, Tali Moreshet, R. Iris Bahar, and Maurice

Herlihy. Embedded-tm: Energy and complexity-effective hardware

transactional memory for embedded multicore systems. Journal

of Parallel and Distributed Computing, In Press, 2010.

Fig. Basic Transactional Log

