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1 Abstract

Transactional memory is a speculative
scheme used for managing memory con-
tention in multiprocessing systems. In hard-
ware transactional memory, we can use a
transactional cache to store all original copies
of data modified during a transaction and the
modified data. In case of data contention
among processors, we must abort, or revert
each thread back to its original state us-
ing the original data we stored in the trans-
actional cache. Unfortunately, the transac-
tional cache consumes approximately 30% of
the total energy used during execution, par-
tially due to storing two copies of data. The
transactional cache also frequently overflows,
causing serialization and slower execution.

We are proposing the use of a transactional
logging scheme to move private data out of
the transactional cache. In the transactional
logging scheme, we only need to save the orig-
inal copy of private data in case of contention.
By reducing the amount of data stored on the
transactional cache, we aim to reduce over-
flows and energy consumed. The transac-
tional logging scheme is more efficient than
the transactional cache because it is a simple

stack. We can improve the efficiency of the
log by keeping track of the types of accesses
we make to private data and only storing the
addresses and data that we need. To do so,
we use a filter cache. The filter cache under-
stands accesses to memory, so it can estimate
if we will need to restore the data. Prelim-
inary results show that the logging scheme
is promising and may reduce power while re-
taining performance.

2 Logging Scheme

In the current transactional scheme, all trans-
actional data is stored on the transactional
cache. The transactional cache must store
two copies of data: the original data and data
that a transaction may modify. If there is a
transactional abort, all modified data is in-
validated and the original data is restored. If
there is a commit, then the backup copies are
invalidiated. Since the transactional cache
must hold two copies of transactional data,
it consumes roughly 30% of total energy con-
sumed during execution. The transactional
cache is also subject to a large amount of
overflows, which can contribute to increased
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cycles spent on a transactional because the
execution is serialized once an overflow oc-
curs. [1]

To combat the energy consumption and
overflows of the transactional cache, we im-
plemented the transactional logging scheme.
The transactional logging scheme stores only
private transactional data, allowing us to
store only shared transactional data on the
transactional cache. Since we only store
shared data in the transactional cache, we re-
duce the amount of data stored in the trans-
actional cache. We only store the original
copy of the private transactional data on the
log. The private data is also treated as nor-
mal, nontransactional data and placed in the
L1 cache in case of modification. If an address
is modified more than once, the log may store
redundant copies of addresses and data. We
can improve the efficiency of the log by keep-
ing track of the types of accesses we make to
transactional data. To reduce these redun-
dancies, we added a filter cache. The sim-
plest implementation of the filter cache, the
static filter cache keeps track of the addresses
that a transaction modifies, so only the first
modification of an address is written in the
log. A more complicated implementation of
the filter cache, the dynamic filter cache, fil-
ters addresses that have been read and writ-
ten. By using the dynamic filter cache, we
ensure that only modified data that we have
read first will be saved in the log. There are
three versions of the logging scheme: No filter
cache, static filter cache, and dynamic filter
cache.
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Figure 1: Architecture overview of one core.

2.1 Logging - No filter cache

The traditional logging scheme uses a log
stored on the scratch pad memory to store
private data. The log operates as a stack.
Each time we need to save private data, we
save the data on the scratch pad memory at
a saved index, and increase the index.

When using the logging scheme, we only
write private transactional data to the log.
The shared transactional data is still written
to the transactional cache, as in the original
data scheme. We save the original value of
the private data to the log only when the data
is modified. In case of a commit, we discard
the data in the log by resetting the log index
to 0. In case of an abort, we write all of the
data on the log back to memory, starting with
the most recently written private data.

2.2 Static Filter Cache

Applications that have a large amount of pri-
vate, transactional data can easily overflow
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Figure 2: Architecture overview including the
transactional log and filter cache.

the scratchpad memory. If an address is al-
ready written to the log, however, we do not
need to write the address and corresponding
data to the log again because we only need
an address and its original data in case of an
abort. If an application writes to a private
address multiple times, we could potentially
save space in the log by only saving an ad-
dress once. Figure 3 shows an address dis-
tribution for the genome benchmark. Since
genome writes to multiple private addresses
multiple times, a log filtering method could
save a large amount of space on the scratch
pad memory.

The filter cache is a cache that only stores
addresses that we write to the log; it does
not store any data. We use the filter cache to
’filter’ all of the log entries. When we store
in address in the log, we also store that ad-
dress in the filter cache. Each time we want
to update the log with an address and data,
we check the filter cache for that address. If
the address is not in the filter cache then we
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Figure 3: Address Distribution for Genome
benchmark.

update the log. If the address is in the fil-
ter cache we do not update the log. Since
the original data is the data the we will save
to the log the first time the address is writ-
ten to, we do not need to save the address
and its modified data multiple times. If the
transaction commits or aborts, we invalidate
all lines in the filter cache.

2.3 Dynamic Filter Cache

The dynamic filter cache only saves addresses
that are read from memory. If we only write
data to an address during a transaction, we
do not need to save that address and data
because the data is not used by other data
during a transaction. Therefore, we only need
to store addresses that have been read and
are then written later on in the transaction.
The scheme for saving addresses that are read
and then written to the log is slightly more
complicated than the static filter cache.

In the dynamic filter cache scheme, we use
two bits to identify the data stored in a cache
line. A dirty bits state of 01 indicates that a
line is invalid. A state of 00 indicates that the
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line has been read, but not written. A state
of 10 indicates that the line has been written
to the log.

If we read an address, we need to check if
the address is in the filter cache. If it is, then
we do not need to do anything else. If the
address is not already in the filter cache, we
must check to see if the line in the filter cache
that the current data will be replacing con-
tains valid data. If the line in the filter cache
contains valid data, then we must check the
line state. If the line state is 00 we must force
update the log: write the current address and
data already in the filter cache to the log be-
fore we replace it with the new data. We
need to save the data to the log because if
the data that we have just evicted is written
to and then read again, we will save incorrect
data to the log. If the line state is 10, then
we can overwrite the line and save the new
address in the filter cache, with state 00.

If we write an address, we also need to
check if the address is in the filter cache. If
we have a cache hit, then we need to save
the address and data to the log and change
the line state in the filter cache to 10. If we
have a cache miss, then we either had to force
update the log with the data or we have not
read the data, so we do not need to save it.
Figure 4 shows a flow chart of the dynamic
filter cache scheme.

2.4 Architecture Overview

The filter cache is a direct mapped cache.
The direct mapped cache provides us with the
ability to quickly access addresses. A down-
fall of using a direct mapped cache as a filter

Figure 4: Scheme for writing data in the log
when using the dynamic filter cache.

cache is line replacement. If an address has
the same tag as an address that is already
in the filter cache, the line will be replaced
when the filter cache probably is not full, so
we are not using the full filter cache. To solve
this problem, we could use a fully associative
cache. The fully associative cache would al-
low us to fill the filter cache completely before
any line is replaced. A fully associative cache,
however, does not allow for a fast search and
access time, which very important to find ad-
dresses in our logging scheme.

The transactional logging and filter cache
scheme requires a few additions to the over-
all architecture of the core, as seen in Figure
2. The transactional log is located on the
scratchpad memory, which still receives both
read and write signals from the CPU. We also
note that only transactional shared data is
now written to the transactional cache and
private transactional data is written to the
log on the scratchpad memory. We have also
added a cache, the filter cache, to the archi-
tecture. The signals between the filter cache
and the log differ, depending on whether or
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not the filter cache policy is static or dy-
namic. If we are using the static filter cache,
then the filter cache receives the write sig-
nal from the CPU and checks if the address
is a hit or a miss. If the address is a miss,
then the filter cache stores the address and
sends the private data to be stored on the
transactional log. In the case of the dynamic
filter cache, private data reads and writes are
sent through the filter cache to the log. The
read and write scheme and cases for which
the address and data are sent to the log can
be seen in Figure 4. If the filter cache size
is 0 the transactional log receives read and
write requests. All read and write requests
sent through the log and filter cache are also
sent to the L1 cache.

2.5 Related Work

LogTM-SE [2] is also a transactional log-
ging scheme. LogTM-SE provides a logging
scheme that stores modified data on a log, re-
sents data pointers on a commit and writes
the log back to memory on an abort. Our log-
ging scheme uses also uses a log that stores
modified data and provides a fast commit.
Our logging scheme also uses the implemen-
tation of the filter cache to ensure that the
only data stored on the log is data that needs
to be restored if transaction aborts. LogTM-
SE offers a speedup in performance as well
as a fast means in recovery of data in case of
an abort. The transactinal logging method
that we have implemented speeds up perfor-
mance as well, but it also offers a reduction in
the amount of overflows in the transactional
cache as well as improvements in energy effi-

ciency.

3 Remaining Work

3.1 Log Overflow

Currently, if there is a log overflow in the
simulator we send an assert and ask that the
user increase the size of the scratchpad mem-
ory. Since the scratchpad memory has limited
size, this is not an optimal solution. There
are several solutions in case of an overflow on
the log: write the private data into the trans-
actional cache or extend the log into memory.

In case of a log overflow, we could put log
data in the transactional cache. If the log
overflows, then we check the transactional
cache for space. If there is room in the trans-
actional cache, then we can write the private
data in the transactional cache, and overflow
when the transactional cache overflows. If
there is no more room in the transactional
cache, then we can trigger a transactional
overflow and serialize the transaction.

We could also extend the log into memory
in case of a log overflow. We would extend
the log into memory by creating a pointer to
a location in memory where the log would be
stored. Extending the log to memory would
be more expensive in terms of having to read
and write to memory every time we update
the log, but since we reset the log every time
we abort or commit this expense has the po-
tential to be small. Extending the log would
also not require us to serialize, as saving the
data in the transactional cache in case of an
overflow would.
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3.2 Bugs

We encountered the majority of the bugs in
the simulator when using the victim cache
configuration. Since transactional data is
stored in the L1 cache when using the vic-
tim cache, there were several extra cases that
we needed to consider in case of an L1 cache
miss. Problems occurred when the data that
we were trying to evict from L1 cache was
marked as transactional. Different problems
occurred depending on whether or not the
transactional data in the L1 cache was mod-
ified or unmodified.

3.2.1 Removing Unmodified Transac-
tional Data

When using the victim cache configuration,
we cannot just remove transactional data
from the L1 cache. We need to save the
transactional data in the victim cache. In
the simulator, the methods read trans()

and write trans() handle the removal of
L1 cache lines marked as transactional.
When we use the log, however, we never
invoke read trans() or write trans()

when we encounter private data, because
read trans() and write trans() will mark
private data as transactional, in which case
using the log becomes pointless.

The solution to removing unmodified
transactional data from the L1 cache is
to handle the problem outside of the
read trans() and write trans() meth-
ods. We chose to place the solution in
mem ctrl.cpp. If there is an L1 cache miss
with private data, we first check to see if the

line that the private data will replace is trans-
actional. If the line is transactional, then we
check for space in the victim cache. If there is
space in the victim, then we write the L1 line
that we want to replace in the victim cache,
and replace the line. If there is not space in
the victim cache, we read the private data
from memory and leave the line in the L1
alone.

3.2.2 Removing Transactional Modi-
fied data

Our solution to removing transactional data
from the L1 cache triggered another prob-
lem: removing transactional data from the
L1 cache that has been modified.

We did not realize this problem until we
tried to run a simulation with a 1-way 1KB
data cache. By replacing lines in the L1
cache, we were saving modified transactional
data as a commit line in the victim cache.
These modified transactional lines were be-
ing written back to memory during a trans-
action. If the transaction needed to abort,
we were restoring the modified data instead
of the original data. In cases of simple bench-
marks such as count, restoring the modified
data caused count to skip counting numbers.
In case of more complicated benchmarks such
as genome this problem caused us to read a
bad address from memory.

Our solution was to leave the modified
transactional data in the L1 cache. Instead,
in the case of an L1 miss with private data,
we write the private data in the victim cache
and mark the private data and normal, com-
mit transactional and exclusive. This solu-
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tion created a few more problems. Luckily,
the simulator already handles victim cache
hits on normal transactional data. We still
needed to handle victim cache hits for private
data in a memory write. If there is a victim
cache hit on private data, then we write the
data in the commit cache and set the dirty
bits to normal and modified.

4 Results

As shown in Figure 6, the logging scheme
greatly reduces the amount of overflows for
the vanilla configuration. There is an increase
in abort rate for all benchmarks (seen in Fig-
ure 5. The increase in abort rate may be due
to the decrease in overflows, as the longer a
transaction lasts, the larger chance it has of
being interrupted by another transaction.

Execution Cycles, shown in Figure 7, drop
in the case of skiplist 4 core victim configu-
ration. They increase in patricia 4core vic-
tim, with a small dynamic filter cache. This
change could be due to a larger amount of
forced updates for the dynamic filter cache
(Figure 10, because each forced update
causes another read to memory for a log
update. This read causes increased cycles.
Note: Read-filter refers to the dynamic filter
cache. Write-filter refers to the static filter
cache.

The transactional log and filter cache
statistics shows a decrease in writes to the
log when the filter cache is used, as seen in
Figure 9.
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Cores Config Log Filter Filter Size Energy Cycles
1 Victim no-log no-filter 0 3.83E09 28546668
1 Victim txlog no-filter 0 3.87E09 28593698
1 Victim txlog dynamic-filter 64 3.87E09 28577696
1 Victim txlog dynamic-filter 256 3.85E09 28545099
1 Victim txlog static-filter 64 3.87E09 28541282
1 Victim txlog static-filter 256 3.85E09 28543454

1 Vanilla no-log no-filter 0 6.26E09 28329353
1 Vanilla txlog no-filter 0 6.28E09 28559222
1 Vanilla txlog dynamic-filter 64 6.29E09 28537394
1 Vanilla txlog dynamic-filter 256 6.27E09 2850472
1 Vanilla txlog static-filter 64 6.28E09 28541282
1 Vanilla txlog static-filter 256 6.26E09 28504994
4 Victim no-log no-filter 0 4.53E09 9294252
4 Victim txlog no-filter 0 4.59E09 9300128
4 Victim txlog dynamic-filter 64 4.6E09 9313659
4 Victim txlog dynamic-filter 256 4.57E09 9283152
4 Victim txlog static-filter 64 4.58E09 9290102
4 Victim txlog static-filter 256 4.56E09 9284104
4 Vanilla no-log no-filter 0 7.41E09 9192030
4 Vanilla txlog no-filter 0 7.45E09 9283213
4 Vanilla txlog dynamic-filter 64 7.48E09 9318782
4 Vanilla txlog dynamic-filter 256 7.43E09 9274955
4 Vanilla txlog static-filter 64 7.45E09 9277301
4 Vanilla txlog static-filter 256 7.43E09 9275166

Table 1: Kmeans system energy and execution cycles.
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Figure 12: Filter cache hit rate for dynamic and static filter cache.
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